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Abstract 
CO2 emissions are commonly perceived to rise and fall with aggregate output. Yet many factors, 
including energy-efficiency improvements, emissions coefficient variations and shifts to cleaner 
energy, can break the positive emissions-output relationship. To evaluate the importance of 
such factors, we uncover shocks that by construction reduce emissions without lowering 
output. These novel shocks explain a substantial fraction of emissions fluctuations. After 
extensively examining their impacts on macroeconomic and environmental indicators, we 
interpret these shocks as changes in the energy efficiency of consumer products. Our results 
imply that models omitting energy efficiency likely overestimate the trade-off between 
environmental protection and economic performance. 

Topics: Climate change, Econometric and statistical methods, Business fluctuations and cycles 

JEL codes: E32, Q43, Q50, Q55



1 Introduction

There is a growing recognition that the design and effectiveness of regulations aimed at

mitigating carbon dioxide emissions1 are intertwined with business cycles. Scientific un-

derstanding of this research area comes from environmental dynamic stochastic general

equilibrium models (E-DSGE models).2 Existing E-DSGE models embed the trade-off

between environmental protection and economic growth since in these models emis-

sions rise and fall with aggregate output. Yet many factors, such as energy-efficiency

changes, variations in emissions coefficients, or shifts to cleaner energy sources, can

potentially break this trade-off. If such factors are empirically relevant for explaining

emissions fluctuations, then the costs of mitigating emissions are overestimated by the

existing literature.

Our study is the first to evaluate the empirical implications of factors that can af-

fect emissions without causing a trade-off between the environment and the economy.

To this end, we devised a conceptually straightforward approach based on the joint be-

havior of total emissions and GDP. We assume that there are two types of uncorrelated

disturbances, each generating a distinct correlation pattern between emissions and GDP.

The first type, the positive correlation (PC) shock, by construction makes emissions rise

and fall with output, thereby creating an environment-economy trade-off. This type of

shock conforms with the procyclicality of emissions, first documented by Doda (2014),

and shares the characteristics of conventional macroeconomic shocks that are used in E-

DSGE models. The second type, the negative correlation (NC) shock, is our primary in-

terest. We impose that NC shocks move emissions and GDP in opposite directions and,

hence, avoid the trade-off. Understanding the historical relevance, economic meaning,

and impacts of the novel NC shock is at the core of our paper.

We identify the two types of disturbances via sign restrictions in a vector autoregres-

sion (VAR) using a Bayesian estimation method with informative priors (Baumeister

and Hamilton, 2015). Our identification approach is based on general statistical as-

sumptions rather than on theory-driven restrictions. This approach has the flexibility

to accommodate multiple factors that share the same properties as NC shocks and en-

1We refer to carbon dioxide emissions interchangeably as “CO2 emissions” or “emissions.”
2See the surveys by Fischer and Heutel (2013) and Annicchiarico et al. (2021).
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ables the overall evaluation of these factors under a minimal set of restrictions. We 
find that both types of shocks have long-lasting effects on emissions and GDP as the 
signs of their effects extend beyond the impact period. NC shocks also account for a 
large share of emissions fluctuations even though no prior expectation was set regarding 
their importance.3 While our identification approach does not allow us to assign a direct 
economic interpretation to NC shocks, we pursue multiple strategies to examine their 
possible drivers.

Our analysis suggests that NC shocks mostly reflect changes in the energy efficiency 
of consumer products. To start, a positive NC shock lowers energy intensity and emis-

sions in the residential and commercial sectors. Its impacts on a number of U.S. macroe-

conomic and environmental indicators conform to the predicted effects of a structural 
energy-efficiency shock to consumer durable goods in a  multi-sector E-DSGE model. 
We provide evidence that energy-efficiency gains in the residential sector have been sub-

stantive but uneven over time. As asserted by Newell et al. (2006), the overall success of 
technological inventions in reducing energy use and emissions depends on consumer de-

cisions to adopt and utilize energy-efficient p roducts. The historical NC shock series is 
positively correlated with pro-environmental attitudes (an aggregate proxy for consumer 
energy conservation behaviors). It is also positively related to energy and environmen-

tal regulations, in line with the Porter hypothesis that regulation can spur technological 
innovation (Porter 1991). Our interpretation of NC shocks as changes in the energy effi-

ciency of consumer products is robust to examinations of weather extremes, changes in 
emissions coefficients, and shifts to cleaner energy sources.4

It has been well-known since Weitzman (1974) that uncertainty can break the equiv-

alence of price and quantity regulations. The E-DSGE literature has brought a new 
dimension to environmental economics by focusing on uncertainties affecting macroe-

conomic conditions. In general equilibrium, different uncertainties, or shocks, create 
distinct incentives for consumers and firms a nd a ffect m arket o utcomes a nd policies. 
Kelly (2005) shows that the welfare rankings of quantity and price regulations in a static 
model depend on the types of economic shocks. Dissou and Karnizova (2016) reach

3E.g., these shocks explain about 50% of the long-run variation in the emissions growth rate.
4Our approach is similar to the analysis of the term spread in Kurmann and Otrok (2013). These 

authors also first identify a statistical series driving the spread and then develop its economic interpretation 
by comparing the impulse responses it generates with those from structural models.
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a similar conclusion regarding the ranking of environmental regulations in a calibrated 
multi-sector E-DSGE model. Annicchiarico et al. (2021) discuss key policy implica-

tions from a series of recent papers on the relationship between business cycles and 
environmental policy. Taken together, these studies make it clear that the design and 
implementation of a successful environmental policy must account for a comprehensive 
set of shocks that affect emissions.

The E-DSGE literature to date has focused on conventional shocks as sources of 
macroeconomic uncertainties. These include shocks to aggregate or sectoral productiv-

ity, monetary policy and public spending.5 In theory, such conventional shocks change 
emissions in accordance with aggregate output. Despite their prominence in explaining 
U.S. business cycles, conventional shocks play a surprisingly limited role in accounting 
for historical emissions fluctuations (Khan et al., 2019).6

We provide new empirical evidence on the drivers of U.S. emissions fluctuations, 
thereby contributing to the literature on environmental policy and business cycles. The 
NC shocks we identify explain a significant s hare o f e missions fl uctuations. Similar 
to the effects of conventional macroeconomic shocks, they induce the procyclicality of 
the key macroeconomic indicators. Yet NC shocks are unique in their prediction that a 
positive realization of this shock simultaneously increases aggregate output but reduces 
the use and price of energy. Most importantly, our findings imply that emissions may be 
reduced without hindering economic activity. These results raise the need for extending 
the set of disturbances considered in the E-DSGE literature to include NC-type shocks, 
such as structural energy-efficiency shocks.

Our findings have strong implications for the structure of E-DSGE m odels. In ex-

isting models, a policymaker must choose between mitigating emissions and stabilizing 
output not only because of the nature of macroeconomic shocks but also because of 
the modeling assumptions. For example, it is common to model emissions as a by-

product of output, following long-run integrated assessment models (e.g., Nordhaus, 
2013). This assumption rules out NC shocks by construction and becomes problematic 
in light of our results. In practice, most anthropogenic CO2 emissions come from fossil

5See Annicchiarico et al. (2021) and the references therein.
6Khan et al. (2019) conclude that “close to two thirds of the variation in emissions appears to be due 

to a structural shock not yet identified in the literature.” We conjecture that energy-efficiency shocks may 
be behind this mysterious structural shock.

3



fuel combustion. Linking emissions to energy consumption would improve our theo-

retical understanding of the possible pathways to decoupling emissions from economic 
activity. In addition, modeling the behaviors of different energy users would help iden-

tify a range of effective emissions mitigation policies. We find, for example, that the 
decline in total emissions after a positive NC shock is mainly driven by the responses of 
the residential and commercial sectors.

Finally, our paper speaks to the debate on the role of energy efficiency and conser-

vation in climate change mitigation. Energy efficiency and conservation feature promi-

nently in international and national strategies to combat climate change (e.g., IEA, 2021; 
IPCC, 2018). Empirical evidence from specific technological innovations (e.g., Gilling-

ham and Stock, 2018), regulatory changes in energy-efficiency standards and voluntary 
labels (e.g., Gillingham et al., 2006; Labandeira et al., 2020), and behavioral inter-

ventions (e.g., Allcott and Mullainathan, 2010; McAndrew et al., 2021) suggest that 
energy-efficiency improvements and changes i n energy conservation can successfully 
reduce energy use and emissions for specific groups of users. What remains uncertain is 
whether technological innovations and changes in consumer behaviors can significantly 
affect emissions at the aggregate level and, if so, for how long. One concern is that 
emissions may decline only in the short run because of the so-called rebound effects 
(e.g., Stern, 2020). Our findings o f p ersistent d eclines i n t otal e missions a nd energy 
consumption after a positive NC shock suggest otherwise.7 Moreover, we document 
a positive relationship between a historical NC shock series and U.S. public concerns 
about climate change and regulations about energy use and the environment. These re-

sults provide indirect support for the view that policies targeting energy efficiency and 
conservation can have meaningful impacts even at the aggregate level.

The rest of our paper is organized as follows. Section 2 analyzes emissions fluctu-

ations using a VAR model with sign restrictions. Section 3 focuses on emissions and 
energy consumption from end-use sectors. Section 4 explores energy efficiency as a pos-

sible driver of NC shocks. Section 5 examines extreme weather, changes in emissions 
coefficients, and shifts to cleaner energy. Section 6 concludes.

7Related to the debate, Bruns et al. (2021) use machine-learning techniques to estimate a shock with 
the maximum impact effect on energy consumption, which is later interpreted as an energy-efficiency 
shock. They find that a decline in energy consumption would regress in four years.
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2 A VAR perspective on emissions fluctuations

2.1 CO2 emissions and output data

Our key series comprises total CO2 emissions obtained from the U.S. Energy Infor-

mation Administration (EIA). Knowing how emissions are measured in practice helps

better understand the results of our paper. The EIA’s bottom-up approach starts with

energy-consumption series disaggregated by fuel types and energy-use sectors (EIA,

2011). British thermal units (Btu) of heat for each fuel product are multiplied by

product-specific CO2 emissions coefficients and then summed up across fuels and sec-

tors to produce the totals. We de-seasonalize monthly emissions, using the X-12 ARIMA

seasonal adjustment package, and take quarterly averages. Aggregate output is the real

GDP obtained from FRED, the database of the Federal Reserve Bank of St. Louis.

Emissions and GDP are divided by the U.S. resident population. All of the data used

in our paper are freely accessible and detailed in the online appendix. Our sample runs

from 1973:Q1 to 2019:Q4.

Standard unit root and cointegration tests indicate that per capita emissions and GDP

are integrated of order one but not cointegrated. Our baseline VAR model thus includes

the growth rates8 of these series, which are shown in Figure 1.9 The scatter plot in Figure

1 reveals that emissions and output move in different directions, surprisingly rather often

(about 45% of all quarters) and contrary to common belief.

2.2 A bivariate VAR model with sign restrictions

A bivariate VAR parsimoniously describes the joint dynamics between output (gdpt) and

emissions (emt). We postulate two orthogonal shocks εpc
t and εnc

t in a structural VAR

Ayt = Bxt−1 + εt, (1)

where yt=[∆gdpt, ∆emt]
′, x′t−1 = (y′t−1, ..., y′t−m, 1)′, m = 4 and εt = [εt

pc, εtnc]′. The
εt shocks follow the normal distribution N (0, D) with a diagonal variance matrix D.

8Growth rates are calculated as 100 times their first-differenced natural logs.
9Our inference related to historical shock estimates is robust to estimating a VAR using the log-levels 

or cyclical components of the HP-filtered data (section 2, online appendix).
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Figure 1: Real GDP and total CO2 emissions (per capita growth rates)
Note: Red squares are the periods when emissions and output growth rates take opposite signs. Blue
circles are the periods when the signs are the same. Shaded areas are the NBER recessions.

We impose the following structure on matrix A and its inverse

A=

[
an 1

ap −1

]
and A−1=

1

ap + an

[
1 1

ap −an

]
. (2)

Shocks εpc
t and εnc

t are identified by sign restrictions that are applied only to the

impact period. We assume that a positive PC shock, εpc
t , increases both output and

emissions, while a positive NC shock, εnc
t , increases output but decreases emissions.

The key restrictions are ap ≥ 0 and an ≥ 0. The parameters ap and an govern the

short-run income elasticity of emissions, conditional on a particular shock,

∂emt
∂gdpt

∣∣∣∣
ε

pc
t

= ap and
∂emt
∂gdpt

∣∣∣∣
εnc
t

= −an. (3)

Our identification approach provides a possible statistical orthogonalization of the

error vector ut in the reduced-form VAR

yt = Φxt−1 + ut, (4)

where Φ = A−1B, ut = A−1εt and E (utu
′
t) = Ω = A−1D(A−1)

′
.While our identifi-

cation approach does not assign prior economic interpretation to εt, we pursue multiple

strategies to establish the meaning of εnc
t in later sections.
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We implement the sign restrictions using a Bayesian estimation algorithm with in-

formative priors proposed by Baumeister and Hamilton (2015). The algorithm explicitly 
acknowledges the impact of priors on posterior inference and, hence, improves the sta-

tistical treatment of the joint uncertainty about the structural parameters. We model the 
priors for ap and an as two independent Student t distributions with three degrees of free-

dom, truncated to be positive, following Baumeister and Hamilton (2015). The location 
and scale parameters c and σ determine the shape of a truncated Student t distribution. 
Our choice of these parameters for ap and an is guided by the existing estimates of the 
income elasticity of emissions. Appendix A explains how we set (cp, σp) = (1.50, 0.85) 
and (cn, σn) = (1.75, 0.7). Under this parameterization, ap and an take values between 
0.15 and 2.5 with 80% probability. We use natural conjugate priors for B and D. The 
setup of the priors as well as the implementation of the estimation algorithm are identical 
to the steps described in section 5.4 in Baumeister and Hamilton (2015).

Our inference is based on the last N = 105 of the total 3 × 107 + N draws from 
the joint posterior distribution p (A, D, B|YT ).

10 We focus on the pointwise posterior 
medians of the impulse responses and their posterior credibility sets. These objects are 
statistically optimal under the Bayesian absolute loss function in a VAR model with 
informative priors (Baumeister and Hamilton, 2018). Similarly, the posterior median 
estimates of the historical shock series are statistically coherent summary statistics of 
sign-identified s hocks.11 In sections 3  to 5  of the paper we will use these estimates to 
investigate the possible economic meanings of NC shocks.

2.3 Results from the VAR model

Figure 2 plots the prior and posterior densities for parameters ap and an. The data are 
informative about the conditional emissions-income elasticities and lead us to revise our 
prior beliefs towards the higher values. The median parameter estimates are âp=3.106 
and ân=2.696. We next discuss the impulse responses, the forecast error variance de-

composition and the historical series of the PC and NC shocks.
10When conducting tests suggested by Geweke (1992) and examining the series of the parameter draws 

and posterior densities we detect no convergence problems with the Metropolis-Hastings sampler.
11Our inference is robust to the use of pointwise posterior mean estimates, which are statistically opti-

mal under the Bayesian quadratic loss function (Baumeister and Hamilton, 2018).
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Figure 2: Prior and posterior distributions of the coefficients in matrix A
Note: Red curves represent prior densities. Blue bars are posterior density histograms.

How do emissions and GDP respond to PC and NC shocks? Figure 3-a displays 
the cumulative posterior impulse response functions (IRFs) of output and emissions to 
positive PC and NC shocks, along with the 68% and 95% posterior credibility sets. 
Stock and Watson (2016) recommend normalizing structural responses on an economic 
variable of interest. We set the shock size to â(pl)+â(nl) to increase GDP by one percent for 
each posterior draw l = 1, ..., N . The resulting impact responses of emissions across the 
draws are equal to the conditional emissions-income elasticities and are directly linked 
to the histograms in Figure 2.12

The effects of both shocks are persistent, as shown in Figure 3-a. The IRF signs 
extend beyond the impact quarter, the only period restricted by our identification. In 
all forecast horizons, output increases after both shocks and emissions increase after a 
positive PC shock. The paths of the emissions that occur after a positive NC shock are 
estimated with slightly lower confidence. Still, the median responses remain negative in 
all forecast horizons, along with the 68% posterior credibility set.

The ratio of emissions to GDP is known as the emissions intensity. Figure 3-b shows 
a persistent decline in emissions intensity (in logs) after a positive NC shock, even 
though our identification restrains the sign to being negative only in the impact period.13 

By contrast, emissions intensity increases after a PC shock. These IRF differences give 
the first indication that NC shocks may differ from conventional macroeconomic shocks.

12This link gives our normalization an advantage over the alternative of reporting impulse responses to 
a unit shock, which is more difficult to understand intuitively in our setup.

13We derive the IRFs of the energy intensity for each posterior parameter draw as differences between 
the corresponding emissions and the GDP responses, in logs.
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Figure 3: Cumulative responses of GDP, total emissions and energy intensity (VAR)
Note: Solid lines represent posterior median cumulative responses. Shaded regions and dashed-dotted 
lines denote 68% and 95% posterior credibility sets. The size of each shock is normalized to increase 
GDP by one percent for every posterior parameter draw.

Since emissions come from fossil fuel combustion, a decline in energy intensity may re-

flect factors such as energy-efficiency changes or  shifts to  cleaner energy so urces. We

explore these interpretations in sections 4 and 5.

9



Growth rate of emissions

quarters

P
e
rc

e
n
t 
o
f 
F

E
V

 1  5 10 15 20
0

20

40

60

80

100

quarters

Log−level of emissions

 
 1  5 10 15 20

0

20

40

60

80

100

Posterior median

68% credibility intervals

95% credibility intervals

Figure 4: Percent of forecast error variance of emissions attributed to NC shocks
Note: Bars represent the Bayesian posterior median estimates of NC shocks’ contributions to the forecast 
error variance of the growth rate and log-level of emissions, computed for the baseline VAR model. 
Shaded regions and dashed-dotted lines denote 68% and 95% posterior credibility intervals.

The relative importance of PC and NC shocks The forecast error variance de-

composition (FEVD) helps assess the relative importance of the sign-identified shocks. 
Figure 4 reports the contribution of NC shocks to the mean-squared forecast errors of 
the emissions. The chart on the left-hand side of the figure shows that these shocks ac-

count for about half of the unpredictable movements in the growth rate of emissions. For 
the log-level, the median contribution of NC shocks to the FEVD remains above 20%

within the first year after the s hock. While this contribution declines over t ime, even 
the shock’s minimum value of 8.4% surpasses the maximum contributions of neutral 
technology shocks, reported by Khan et al. (2019), and exceeds those of government 
spending and monetary policy shocks by a factor of ten (ibid.). These results, however, 
are subject to a fairly large degree of estimation uncertainty.

Historical shock realizations Figure 5 plots the posterior median estimates of the 
historical PC and NC shock series, starting in 1974:Q2. The red circles mark the quar-

ters for which all estimated shock values within the 95% posterior confidence intervals 
have the same signs. As shown by the multiplicity of such quarters, these shocks are 
estimated with high confidence. A ll N BER r ecessions c ontain l arge ( exceeding one 
standard deviation) negative realizations of the PC shocks. By contrast, the historical 
NC shock series does not follow a clear cyclical pattern. A possible interpretation of 
these results is that the PC shocks reflect conventional macroeconomic s hocks, while 
the NC shocks have emissions-specific determinants.
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Figure 5: Historical estimates of the sign-identified VAR shocks
Note: Solid lines are the Bayesian posterior median estimates of the historical PC and NC shock se-
ries. The red circles denote quarters during which all PC and NC shock estimates in the 95% posterior 
confidence intervals have the same signs. Shaded areas are the NBER recessions.

Robustness We ran a battery of robustness checks, focusing on comparing the poste-

rior median estimates of the historical NC shock series from our baseline and alternative 
VAR setups. We tried different priors, used the posterior mean estimates of the NC 
shocks in place of the medians, added extra lags to the VAR, extended the sample pe-

riod to 2020:Q2, and used the data in the log-levels and the cyclical deviations from the 
Hodrick-Prescott trend (instead of the growth rates). We also estimated a VAR model 
using annual series from 1949 to 2019.

Our baseline results appear to be very robust. In fact, most correlation coefficients 
between the baseline and the alternative shock estimates range from 0.90 to 0.99. The 
only exception is the correlation coefficient of 0.62 between the annual averages of the 
baseline and the posterior median from the VAR with the annual data. More details 
about the robustness analysis are given in section 2 of the online appendix.
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3 Insights from the energy-use sectors

This section extends our analysis to different energy users. We use distributed lags

models to estimate how the end-use sectors defined as such by the EIA respond to PC

and NC shocks. Our key finding is that the NC shocks are mostly linked to the residential

and commercial sectors. This result helps us establish the meaning of these NC shocks.

3.1 Inference with distributed lags models

Distributed lags models (DLMs) provide a uniform way to estimate the responses of

many variables to PC and NC shocks without adjusting the minimal set of VAR re-

strictions that identifies these shocks. Each DLM projects the growth rate of a variable

of interest, ∆zt, on the current and past realizations of the historical shocks from the

baseline VAR model (1) and includes a constant, as in

∆zt = αz +
12∑
j=0

βzj ε̂
nc
t−j +

12∑
j=0

γzj ε̂
pc
t−j + ezt. (5)

The regression coefficient β j (γj ) defines the response of ∆z t observed j quarters after 
a unitary NC (PC) shock. The cumulative response of zt at the horizon h is the sum of 
these regression coefficients f rom the impact period t  to t + h. We compute standard 
errors using a block bootstrap, thereby correcting for possible serial correlation in the 
error term ezt. All of the reported results are based on 20,000 replications and a block 
size four. The maximum horizon of 12 quarters is guided by the likelihood ratio and 
the F -test results. A similar two-step procedure is used by Kilian (2009) to estimate the 
effects of VAR-identified oil price shocks on the U.S. economy.

Our main DLM results are obtained with the posterior median estimates of the his-

torical shocks (hereafter, median shocks). These shocks are treated as predetermined in 
(5), and the model is estimated using OLS. In reporting the IRFs, we set the size of each 
shock to 5.802, which is equal to the sum of the median estimates of âp and ân. This ap-

proach is consistent with our normalization of the IRFs to increase GDP by one percent 
in the VAR. The adjusted R̄2 statistics for (5) can measure the quantitative contribution 
of the estimated shocks to explaining the variation in ∆zt.
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Figure 6: Responses of per capita CO2 emissions by the end-use sectors (DLM)
Note: Solid blue lines are the cumulative responses to the median shocks, estimated using DLM (5). 
Dashed and dotted red lines denote one and two-standard bootstrapped error bands.

The IRF estimation with (5) is subject to three types of uncertainty: the VAR pa-

rameter estimation uncertainty, the VAR model identification uncertainty and the DLM 
parameter uncertainty. There is no clear guidance in the literature on how to simulta-

neously address these three uncertainty types. Our main DLM results incorporate the 
parameter uncertainty embedded in (5) but do not account for the fact that the shock 
estimates are generated regressors. Section 3.1 of the online appendix reports an alter-

native set of IRFs and confidence bands, based on the historical shocks obtained from 
all accepted models. That approach takes care of the VAR estimation and the model 
uncertainty but ignores the DLM estimation uncertainty.

3.2 Heterogeneity in responses of energy-use sectors

The EIA publishes monthly emissions and energy consumption of the residential, com-

mercial, industrial and transportation sectors. These four end-use sectors differ sub-

stantially in their principal usage and main sources of energy (EIA, 2020). For example, 
homes and commercial buildings use energy for heating, cooling, lighting, and operating 
appliances and electronic devices. Industrial needs vary from employing energy prod-

ucts as direct production inputs to utilizing electricity to run machinery and equipment. 
In terms of energy sources, the residential and commercial sectors mainly use electricity
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and natural gas, while the transportation sector is a heavy user of motor gasoline. The 
industrial sector uses diverse energy sources. It is therefore important to establish if the 
responses of sectoral emissions to NC and PC shocks conform to those of total emis-

sions. Since emissions in the four end-use sectors are derived not only from primary 
energy use but also from the use of purchased electricity, we also consider the electric 
power sector. For our analysis, we convert the monthly data to seasonally adjusted per 
capita quarterly averages.

Figure 6 reveals intriguing heterogeneity among end-use sectors. A PC shock be-

haves like an aggregate business-cycle shock, raising emissions across all sectors. By 
contrast, an NC shock affects each sector differently. It induces significant a nd pro-

longed emissions reductions in the residential and commercial sectors, an increase in 
emissions in the transportation sector and no significant emissions response in the indus-

trial sector. Emissions in the electric power sector also decline, a response that provides 
additional information on how the NC shock is transmitted to energy users.

Section 3 of the online appendix includes two sets of additional results. First, ac-

counting for the VAR estimation and model uncertainty unsurprisingly expands the 
range of emissions responses relative to that in Figure 6. However, the IRFs of emis-

sions in the residential, commercial and electric power sectors remain negative for sev-

eral quarters after a positive NC shock, with 95% confidence. Second, the IRFs of the 
total energy consumption by sector largely echo those of emissions.

Table 1 quantifies the sectoral impacts of NC and PC shocks. The NC shocks alone 
explain more than half of the variation in emissions growth in the residential and com-

mercial sectors. Close to half of this contribution comes from changes in direct fossil 
fuel consumption. The remainder largely reflects changes in electricity u se. Including 
both shocks in (5) raises the adjusted R̄2 substantially, as Table 1-b shows. Together, 
they explain over 80% of the growth rates in emissions in the residential and commercial 
sectors and over 50% in the industrial sector.

Overall, the sectoral analysis reveals that the NC shocks are mainly linked to emis-

sions as well as energy use in the residential and commercial sectors. We argue in 
the next section that changes in energy efficiency, especially those related to consumer 
products, are likely drivers of these NC shocks.
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4 NC shocks as energy-efficiency shocks

We define energy efficiency as the use of technology to manage and restrain growth

in energy consumption. A product or a process is more efficient if it requires less en-

ergy to deliver the same services or provides more services for the same energy input.

This section first describes an E-DSGE model where energy efficiency is determined

exogenously. The main goal of the model is to derive clear predictions on how energy-

efficiency shocks are transmitted to different energy users and to the whole economy.

We find that the responses of U.S. variables to the estimated NC shocks conform to

these predictions. We proceed by examining possible impacts of pro-environmental at-

titudes, regulatory changes and energy prices on NC shocks, following the interpretation

of technological change in Newell et al. (2006).

4.1 Lessons about energy efficiency from the E-DSGE model

We introduce emissions into a DSGE model developed by Huynh (2016). The model

includes multiple energy users, which enables us to relate the model’s predictions to

the sectoral responses from section 3.2. The model also features two distinct energy-

efficiency shocks, affecting consumer durables and capital. The key lesson is that the

effects of a positive NC shock on U.S. macroeconomic and environmental variables

qualitatively match these variables’ predicted paths following an improvement in the

energy efficiency of the consumer durable goods in the E-DSGE model.

4.1.1 Key assumptions of the E-DSGE model

Our real business cycle model has three production sectors, perfectly competitive mar-

kets, and perfect factor mobility. Our exposition here focuses on modeling energy pro-

duction and consumption, emissions and energy efficiency. Section 4 of the online ap-

pendix describes the model in detail.

Modeling energy consumption and energy efficiency Energy is used by con-

sumers (eh,t), energy producers (ee,t) and producers of durable and nondurable goods

(ed,t and en,t). Total energy consumed is et = eh,t + ee,t + ed,t + en,t.

Consumers need energy to derive services from durable goods, such as appliances.
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Their energy use is proportional to the service flows from durables, defined in the model

as a product of the durable stock, dt, and its rate of utilization, ut,

eh,t = Ad,tdtut. (6)

Energy intensity, Ad,t, determines the energy requirements per unit of durable service

flows. For producers, energy is perfectly complementary to capital, kf,t:

ef,t = Ak,tkf,t, f ∈ {e, d, n} . (7)

Energy intensity, Ak,t, is common across all producers, as in Huynh (2016).

The inverse of energy intensity Ad,t (Ak,t) uniquely determines the energy efficiency

of consumer durables (productive capital). As Ad,t decreases, consumers require less

energy for the same durable good services, which means the energy efficiency of the

consumer durables improves. Similarly, a drop in Ak,t corresponds to an improvement

in the energy efficiency of productive capital.

Modeling production of energy and non-energy goods Energy is produced from

capital, ke,t, and labor, he,t. Production also depends on Ze,t, specific to the energy

sector’s total factor productivity (TFP), and exhibits some wastage, σt:

ye,t = Ze,t (1− σt) kγee,th
1−γe
e,t , 0 < γe < 1, (8)

σt =
ωe
3

(
kγee,th

1−γe
e,t

)3
, ωe > 0. (9)

The convex production costs (9) help generate a low price elasticity of energy supply

and prevent the energy sector from making a very rapid response to energy demand

shocks. Output in the nondurable and durable goods sectors is produced according to

yf,t = Ztk
γf
f,th

1−γf
f,t , 0 < γf < 1, f ∈ {d, n} . (10)

Total factor productivity Zt is common to both sectors, following Huynh (2016).
Modeling emissions and environmental damage We model emissions as a func-

tion of energy consumption: emt=κ et. In line with the evidence in section 5.2, the
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emissions coefficient κ > 0 is constant.14 The accumulated emissions stock causes en-

vironmental damage. There is substantial uncertainty in the literature about a relevant

damage function and a realistic depiction of the carbon cycle. To focus on the economic

effects of energy-efficiency shocks, we model environmental damage as being a negative

externality on consumer welfare. We also assume that the damage is additively separa-

ble in the utility function, as in Stern (2008) and Hassler et al. (2010). The separability

assumption enables us to solve the model in a laissez-faire scenario without specifying

the damage parameters and the carbon cycle.15

Parameter calibration and solution We solve the model in the absence of environ-

mental regulation by log-linearizing the competitive equilibrium equations around the

deterministic steady state and applying the perturbation method.

Exogenous processes Zt, Ze,t, Ad,t and Ak,t are assumed to follow independent au-

toregressive processes of order one, in logs. We set all shock persistence parameters to

0.999, motivated by the empirical IRFs in Figure 3. The value of κ is inconsequential,

since the dynamics of emissions and energy consumption coincide in the log-linearized

model. All other parameters are directly from Huynh (2016).

4.1.2 Transmission of energy-efficiency shocks in the E-DSGE model

The IRFs of the GDP and total energy consumption from the E-DSGE model in Fig-

ure 7-a show that only the energy-efficiency shocks would be classified as NC shocks

in our VAR. An energy-efficiency improvement, represented by a decline in Ad,t or

Ak,t, decreases energy and emissions but increases GDP.16 The energy price declines

after both structural energy-efficiency shocks, meaning that they both act as if they are

energy-market-specific demand shocks. By contrast, TFP shocks to energy production

represent energy supply shocks, while non-energy TFP shocks are aggregate demand

shocks.17 The joint analysis of the energy price, energy consumption/production and

the GDP thus identifies the economic nature of the shocks in the E-DSGE model.
14Fischer and Springborn (2011) and Dissou and Karnizova (2016) make a similar assumption.
15Nordhaus (2013), Golosov et al. (2014) and Acemoglu et al. (2012) provide possible alternatives to

modeling the environmental damage and the evolution of the emissions stock.
16Recall that the emissions deviations from the steady state mimic the energy consumption responses.
17An increase in Ze,t raises energy production but decreases the energy price. An increase in Zt

simultaneously raises aggregate output, energy production and the energy price.
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(b) Effects of energy-efficiency improvements on energy consumption, by sectors
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(c) Effects of an energy-efficiency improvement in consumer durables
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Figure 7: Impulse responses from the E-DSGE model

Note: The IRFs are in percent deviations from the deterministic steady state. Purple and green lines are 
the IRFs to a TFP increase in the energy sector and in the non-energy sectors. Solid red and dashed blue 
lines denote the responses to an increase in the energy efficiency of durable goods and capital. The shock 
size is normalized to increase real GDP by one percent in the E-DSGE model.

In section 3.2, a positive NC shock reduces not only total emissions but also emis-

sions and energy consumption in the U.S. residential and commercial sectors. Figure

7-b reveals that the origin of the energy efficiency matters for explaining the sectoral 
responses. In the E-DSGE model, a reduction in consumers’ energy use is observed 
only when an efficiency improvement is related to consumer d urables. This shock also

increases the energy consumption of non-durable and durable goods producers and de-

creases the energy consumption in the energy sector. Since energy-efficiency shocks to 
consumer durables appear to be likely drivers of the NC shocks, we next examine their
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effects on other variables in the E-DSGE model.
An efficiency improvement in consumer durable goods (i.e., a fall in Ad,t) decreases 

the consumer energy needs per service flow o f d urables, p utting d ownward pressure 
on the energy price. Faced with lower energy costs, consumers increase their utiliza-

tion18 and new purchases of durables (Figure 7-c). These responses, however, do not 
fully offset the impact of higher energy efficiency, and consumer energy use falls (Fig-

ure 7-b). Lower energy spending, ceteris paribus, increases the amount of disposable 
income, driving up consumption demand (Figure 7-c). The energy price decline also 
brings a positive supply effect through lower production costs, although the increase in 
producers’ energy demand is restrained by the existing stock of capital due to the high 
capital-energy complementarity. On the supply side, convex costs limit energy produc-

tion adjustments. In equilibrium, total energy consumption declines and so does energy 
intensity (Figures 7-a and 7-c).

At the aggregate level, consumption, investment and hours worked increase in the E-

DSGE model (Figure 7-c). These dynamics resemble responses to a “standard” macroe-

conomic shock that induces the procyclical behavior of key macroeconomic quantities. 
Yet, energy-efficiency shocks to consumer durables have three distinctive characteris-

tics in the E-DSGE model. A positive shock of this kind (i) moves aggregate output and 
total energy consumption in opposite directions; (ii) reduces the energy price; and (iii) 
decreases the energy consumption of consumers.

All three distinctive characteristics of the structural shocks to the energy efficiency 
of consumer durables are reproduced in the responses of the actual U.S. series to NC 
shocks. We have already discussed GDP and consumers’ energy-consumption responses. 
Figure 8 confirms the decline in total energy consumption and p rices.19 Figure 8  also 
shows that aggregate consumption and investment, new purchases of consumer durables 
and average work hours all increase after a positive NC shock, while energy intensity 
declines.20 In sum, the IRF analysis suggests that the NC shocks appear to capture

18This prediction is consistent with consumer behaviors in a field experiment in Davis (2008).
19The energy price is measured by the EIA’s cost of fossil fuel receipts at electric generating plants 

divided by the Bureau of Economic Analysis (BEA) price index for personal consumption expenditures 
on durables, in conformity with durables being the numeraire in the E-DSGE model.

20The consumption and investment series are from the BEA. We adjust these series by the U.S. resident 
population. Average weekly hours for the business sector are from FRED.
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Figure 8: Responses of macroeconomic variables to positive NC shocks (DLM)

Note: Solid lines are the cumulative responses to a median NC shock, estimated using DLM (5). Dashed 
and dotted red lines denote one- and two-standard bootstrapped error bands.

changes in the energy efficiency of consumer products.

4.2 Further explorations of energy efficiency

This section is guided by an interpretation of energy-saving and emissions-reducing 
technological change proposed by Newell et al. (2006). This interpretation includes five 
stages: invention, innovation, diffusion, stock turnover and intensity of equipment uti-

lization. We first present evidence that energy-efficiency gains in the residential sector 
have been substantive but uneven over time. We then explore possible links between 
the historical NC shock series and measures of energy intensity, pro-environmental atti-

tudes, environmental and energy regulations and energy prices.

4.2.1 Technological change and market incentives

In Newell et al. (2006), technological change starts with invention–the creation of a new 
product or process to reduce the energy use for the same service–and innovation, which 
is its commercialization. Multiple technological breakthroughs have already reduced en-

ergy and emissions in the residential sector (e.g., loose-fiber insulation, low-emissivity 
window coatings, electric heat pump water heaters) or have shown a potential do so
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(e.g., magnetic refrigeration, insulating window films).21 LED (light-emitting diodes) is

the recent success story. The energy efficiency of lighting is measured by the amount

of light in lumens per unit of energy used in watts. The average efficacy of LEDs has

improved by 6-8 lm/W each year since 2010 (IEA, 2020). Current LED efficacies are

at least twice as high as those of compact fluorescent lamps and halogens. According to

the EIA, a complete switch to LEDs in the U.S. over 2013-2033 would decrease elec-

tricity consumption for lighting by almost 50% and avoid 1,800 million metric tons of

CO2 emissions.22

As available commercial products are adopted by consumers (diffusion), models that

are more energy efficient will replace less-efficient ones, thereby increasing the aver-

age energy efficiency of the existing stock of models (stock turnover). At the level of

major consumer products (heating and cooling equipment, water heaters, refrigerators,

lighting, and appliances), average energy efficiency has improved over time, albeit at

a varying pace. While energy-efficiency measures for these products are not readily

available, examples of time-series estimates can be found in the literature.23 A changing

mix of product characteristics of all existing models and diffusion choices can explain

these variations and even a decline in the energy-efficiency measures that are aggregated

across product models (Newell et al., 1999).

Surprisingly, technological innovation setbacks are possible. For instance, the U.S.

market witnessed two failed attempts to commercialize heat pump water heaters in the

1950s and early 1980s before they were relaunched successfully in 2009 (Willem et al.,

2017). The latest models are at least twice as energy efficient as conventional elec-

tric water heaters, yet their market penetration remains low, possibly due to consumer

preferences or lack of awareness.

The success of technology in reducing emissions depends not only on the energy

efficiency of the existing stock of equipment but also on its utilization intensity. This

final stage highlights the behavior of technology users (Newell et al., 2006). If the

21E.g., https://www.energy.gov/energysaver.
22https://www.energy.gov/articles/top-8-things-you-didn-t-know-about-leds.
23See, for example, Figure 2 in Nadel (2002) for energy intensity measures of U.S. refrigerators, central

air conditioners and gas furnaces; Figure 5 in Brucal and Roberts (2019) for the average energy consump-
tion of clothes washers, and Figure II in Newell et al. (1999) for changes in the energy efficiency of room 
and central air conditioners and gas water heaters.
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Figure 9: Responses of annual energy intensity indicators (DLM)

Note: Solid lines are the cumulative responses based on a DLM with the annual averages of the quarterly 
median NC shocks. The model includes three lags and contemporaneous shock values and a constant. 
Dashed and dotted lines are one- and two-standard block bootstrapped error bands. The sizes of the 
shocks are normalized to increase GDP by one percent.

utilization of energy-using services grows or more energy-intensive products are favored 
by users, then the total energy use can increase rather than decrease after an energy-

efficiency i mprovement. However, the existing evidence on this rebound effect at the 
aggregate level is mixed (e.g., Stern, 2020).

Energy efficiency i s often measured using energy i ntensity, or t he quantity of en-

ergy per unit of output or activity. In our E-DSGE model, a unique correspondence 
exists between energy intensity and energy efficiency. More generally, higher efficiency 
is expected to reduce energy intensity. We find a  persistent decline in the ratio of to-

tal energy consumption to GDP, the most common measure of energy intensity, after 
a positive NC shock (Figure 8). The energy-to-GDP ratio, however, will reflect not 
only energy efficiency but also behavioral and structural factors, such as changes in the 
industrial structure, energy mix, weather or demographics. The U.S. Department of En-

ergy’s Office of Energy Efficiency and Renewable Energy corrects for such factors to 
provide energy intensity indicators (EIIs) that measure energy efficiency as accurately 
as possible. The annual EIIs from 1974 to 2011 are published for the end-use sectors. 
The residential sector EII manifests that the energy efficiency in this sector improved 
by 1.05% per year, on average. Figure 9 reports the estimated responses of the EIIs 
to a positive NC shock. Although the estimates are not very precise, we find that the 
residential sector EIIs decline. These results re-enforce our interpretation of NC shocks 
as being changes in the energy efficiency of consumer products.
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Figure 10: U.S. public attitudes towards climate change and NC shocks
Note The circles represent the percent of the respondents in Gallup surveys who answered “a great deal” 
or “a fair amount” to the question “I’m going to read you a list of environmental problems. As I read each 
one, please tell me if you personally worry about this problem a great deal, a fair amount, only a little, or 
not at all. ... how much do you worry about global warming or climate change?” The right-hand panel 
plots changes in the index from the previous survey, along with the median NC shocks.

4.2.2 Energy conservation and NC shocks

Energy conservation includes one-time investment behaviors that enhance the efficiency
performance of a product or a process as well as repetitive behaviors that reduce en-

ergy use, such as car-pooling or air-drying clothes. Most empirical evidence on energy 
conservation comes from controlled or quasi-controlled energy-efficiency interventions

aimed at reducing financial and informational barriers faced by c onsumers. Systematic 
reviews by Abrahamse et al. (2005), Allcott and Mullainathan (2010) and McAndrew 
et al. (2021) identify large differences in intervention types as well as in targeted and 
measured outcomes. While the overall evidence is mixed, some interventions have been

very successful in reducing energy consumption and emissions in a cost-effective way 
(e.g., Allcott, 2011; Delmas and Lessem, 2014).24

To explore a possible link between energy conservation and NC shocks, we use a
measure of U.S. public opinion on climate change from Gallup. Two observations mo-

tivate our approach. First, multiple psychological theories rationalize that there is a 
relationship between attitudes and behaviors.25 Empirical studies find that attitudes that 
are more pro-environmental help reduce energy consumption (e.g., Heberlein and War-

24Carbon abatement costs of these interventions are often negative (Gillingham and Stock, 2018). 
25E.g., theories of social norms (Allcott, 2011; Delmas and Lessem, 2014), of cognitive dissonance 

(Festinger, 1962), of self-perception (Bem, 1972), and of planned behavior (Ajzen, 1991).
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riner, 1983; Sapci and Considine, 2014; Bruderer Enzler et al., 2019) and increase the 
self-reported frequency of energy-conservation behaviors (e.g., Pothitou et al., 2016). 
Second, countries with higher levels of concern about climate change tend to have lower 
per capita CO2 emissions (Stokes et al., 2015).

Gallup has been polling Americans about how much they personally worry about 
global warming and climate change since 1989. The Climate Change Worry Index 
(CCWI), displayed in Figure 10, reports the percentage of respondents who stated that 
they worried “a great deal” or “a fair amount.” The change in the index from the previous 
poll is positively related to the historical NC shock series (Figure 10). The correlation 
coefficient between the two series is 0.521 ( s.e. 0.115) in the quarters during which the 
polls were conducted. By contrast, this statistic for the historical PC shock series is 
0.002 (s.e. 0.189).

Previous research finds t hat p ro-environmental v iews t end t o b e p rocyclical (e.g., 
Kahn and Kotchen, 2010; Brulle et al., 2012) but also linked to other factors unrelated 
to economic activity. Elite cues, media coverage of climate change and advocacy by 
pro-environmental groups and their opponents (e.g., corporations and industry trade as-

sociations) are deemed to play significant r oles i n s haping a ggregate o pinion trends, 
while extreme weather events and scientific information dissemination have limited im-

pacts (e.g., Brulle et al., 2012; Daniels et al., 2012).

To further investigate the relationship between NC shocks and climate change wor-

ries, we compute the historical decomposition of emissions for two periods (Figure 11-

a). The first p eriod ( 1997:Q4-2000:Q2) i ncludes t he p eak i n p ublic c limate change 
worries. CO2 emissions grew by 1.57% during this time. The U.S. economy was boom-

ing and the PC shocks made a positive contribution of 3.94%. However, the NC shocks 
had a number of sizable positive realizations, in line with rising pro-environmental atti-

tudes, and offset the positive contributions of the PC shocks on emissions by −2.45%. 
The second period (2007:Q4-2009:Q2) corresponds to the decline in the CCWI during 
the Great Recession. Emissions plunged by −11.16%. The recessionary impact of the 
negative PC shocks contributed more than the actual drop, dragging emissions down by

−12.00%. However, the NC shocks pushed emissions up by 0.81%, consistent with the 
decline in the CCWI.
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Figure 11: Historical decomposition of emissions (in percent)
Note: Blue bars denote actual emissions changes. Red and yellow bars are the posterior median esti-
mates of the historical contribution of the PC and NC shocks to emissions changes, computed following 
Baumeister and Hamilton (2018).

4.2.3 Government regulation and NC shocks

Porter (1991) put forward a hypothesis that environmental regulation can spur tech-

nological innovation, increase competitiveness and even offset regulation compliance 
costs. Acemoglu et al. (2012) formalize the Porter hypothesis in a general equilibrium 
model with directed (endogenous) technological change. They show that environmental 
goals can be achieved “without sacrificing (much or any) long-run growth,” through the 
use of carbon taxes and research subsidies (p. 133). Several studies find positive effects 
of stricter regulations on patents (e.g., Girod et al., 2017; Martı́nez-Zarzoso et al., 2019), 
on the number of commercial models (e.g., Brucal and Roberts, 2019) and on average 
energy efficiency ( e.g., N ewell e t a l., 1 999). C omprehensive r eviews b y Gillingham 
et al. (2006) and Labandeira et al. (2020) find energy-efficiency policies to be effective 
in reducing energy use and emissions. The results are particularly strong for appliance 
standards and utility-based demand-side management programs in the U.S. residential 
sector. Furthermore, energy-efficiency standards do not appear to cause significant ad-

verse effects on manufacturers (e.g., Jaffe et al., 1995; Nadel, 2002; Brucal and Roberts, 
2019). In sum, regulatory changes may reduce emissions without tempering economic 
growth.

We assess the link between regulation and NC shocks in two ways. To start, Figure 
11-b reports the historical decomposition of emissions around three milestone federal
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Figure 12: Environmental Policy Stringency Index, PC and NC shocks
Note: This figure reports cross-correlations between the changes in the OECD Environmental Policy
Stringency Index and the annual averages of the quarterly median PC and NC shocks. The dashed lines
are the 95% bootstrapped confidence bands, based on 10,000 draws.

regulations. The National Appliance Energy Conservation Act of 1987 established na-

tional mandatory minimum efficiency standards for 15 categories of household appli-

ances. The Energy Policy Act of 1992 extended the product coverage. The American

Recovery and Reinvestment Act of 2009 was implemented in the midst of the Great

Recession and included a number of energy-related provisions.

Regarding the first two acts, for the historical decomposition of emissions, we se-

lected eight quarters from the regulation implementation dates. The positive NC shocks

after each regulation reduce emissions by -0.54% and -0.37%, respectively, partly off-

setting the contributions from the PC shocks.

Under the American Recovery and Reinvestment Act of 2009, the Department of

Energy invested more than $US 31 billion through the Act in projects aimed at creating

new power sources and enhancing energy efficiency for homeowners and businesses.

Most funding was dispersed between 2009:Q1 and 2012:Q1,26 so we use this time period

for our historical decomposition. The third set of bars in Figure 11 (b) shows that the

NC shocks explain about half of the sizable -5.61% drop in emissions.

The second exercise involves the OECD Environmental Policy Stringency Index

(EPSI) for the U.S. economy (1990-2015).27 The EPSI is a broad measure of environ-

mental policy that goes beyond any single regulation and integrates market- and non-

market-based environmental policy instruments. Albrizio et al. (2017) and Martı́nez-

Zarzoso et al. (2019) find that more-stringent policies, corresponding to higher values

26See https://www.energy.gov/downloads/successes-recovery-act-january-2012 for more details.
27Retrieved from http://oe.cd/OQ. Accessed May 15, 2021.
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on the EPSI, promote R&D activities, increase the number of patents and stimulate pro-

ductivity growth in OECD countries. Figure 12 reports the correlations of the changes in 
the EPSI with the leads of the historical PC and NC shock series. More-stringent regu-

lations are negatively related to the PC shocks contemporaneously, pointing to possible 
immediate economic costs. However, the EPSI changes are also positively correlated 
with the three-years-ahead values of the NC shocks. This positive sign is consistent 
with the Porter hypothesis that regulation can induce technological change if the NC 
shocks reflect changes in energy efficiency.

4.2.4 Energy prices and NC shocks

It has been argued that rising energy prices could induce technological change (e.g., 
Newell et al., 2006). Our baseline VAR does not include energy prices. To check for 
the possible effects of past energy prices on the historical NC shock series, we estimate 
a number of linear projections. We examine multiple energy prices in nominal and 
real terms, restrict price changes to only price increases, compute non-linear net-price 
increases, use different subsamples and also vary the number of lags. In no specification 
do past energy prices affect NC shocks in a statistically significant way.

We showed in section 4.1.2 that positive NC shocks decrease the real price of fossil 
fuels, in line with the predicted effects of a positive energy-efficiency shock in the E-

DSGE model. Our results suggest that, to the extent the NC shocks capture changes in 
energy efficiency, these changes are not induced by energy p rices. Consistent with our 
results, Newell et al. (1999) find that a large fraction of the efficiency improvements in 
consumer durables is unrelated to energy price changes.

5 Other possible drivers of NC shocks

This section explores three possible drivers of NC shocks: (i) extreme weather, (ii) 
changes in CO2 emissions coefficients, a nd ( iii) s hifts f rom d irtier t o c leaner energy 
sources. We find some support for the first alternative. However, correcting for weather 
changes retains the importance of energy efficiency.
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5.1 Weather extremes

Weather extremes can have strong impacts on energy consumption, emissions and eco-

nomic activity (e.g., Dell et al., 2014). Energy demand for heating and cooling surges 
in very cold winters and hot summers; hence, emissions surge during these periods. At 
the same time, output can decrease through multiple channels, including infrastructure 
damage and falls in labor productivity. The National Oceanic and Atmospheric Ad-

ministration (NOAA), which has kept track of billion-dollar U.S. weather and climate 
disasters since 1980, attributes 26 disaster events to freezes and winter storms and 11 to 
heat waves and droughts. NC shocks may thus reflect weather extremes.

To study this possibility, we start with the national average temperature from the 
NOAA. We compute the quarterly means of the deviations from the month-specific 
trends. We also construct three series of extreme temperatures, breaking down a year 
into heating and cooling seasons. The cold (warm) heating season variable is defined 
by the temperature values in quarters 1 and 4 when the mean temperature is more than 
one standard deviation below (above) the average, and by zeros otherwise. Similarly, 
the non-zero values of a hot cooling season variable are set to temperatures that exceed 
one standard deviation above the means in quarters 2 and 3.28

Table 2 shows the complexity of the weather effects on the economy, as the aver-

age temperature is significantly c orrelated w ith b oth h istorical s hock s eries. For NC 
shocks, the correlations are the strongest during heating seasons. The correlation signs 
are intuitive. In a cold heating season, when low temperatures drive up energy demand 
and emissions, a negative NC shock is likely to occur. A positive NC shock in a warm 
heating season implies that milder weather tends to lower energy demand and emissions 
while extending seasonal work and raising economic activity.

We re-estimate the IRFs of emissions using a version of (5) augmented with the 
current and lagged values of the average temperature, the Residential Energy Demand 
Temperature Index and precipitation.29 Controlling for weather indicators increases the 
initial response of residential sector emissions to an NC shock from -6.77% to -4.75%.

28The online appendix expands on the weather data construction, reports the IRFs obtained with 
weather controls and includes the correlation and adjusted R̄2 tables discussed in the text.

29All weather indicators are based on the monthly series from the NOAA. Our model includes two lags, 
but increasing the number of lags further has minimal effects on the estimates.
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Figure 13: IRFs of emissions and energy consumption by energy source (DLM)
Note: Cumulative responses of per capita total energy consumption (thick blue lines) and total emissions 
(thin magenta lines) are obtained from the DLM (5). Dashed and dotted lines are block-bootstrapped one-
and two-standard errors bands.

However, the overall pattern of the IRFs of emissions remains the same and the adjusted
2 for emissions and total energy consumption show little change (section 5, online 

appendix). We hence conclude that our interpretation of NC shocks as capturing energy-

efficiency changes is robust to weather variations.

5.2 Changes in the CO2 emissions coefficients

The EIA uses CO2 emissions coefficients in estimating e missions. Reflecting chemical 
compositions, these coefficients r ange f rom 53 million metric t ons of C O2 emissions 
per quadrillion Btu for pipeline gas to 114 for coal coke. A decline in the emissions 
coefficients will r educe t otal emissions for a  g iven l evel of energy use and aggregate 
output. Hence, changes in the coefficients could be possible drivers of NC shocks.

The published CO2 emissions coefficients, h owever, v ary s urprisingly l ittle over 
time. These coefficients are constant for 24 of 35 products for the entire period since 
1973 and for all energy products before 1980 and after 2010. Furthermore, the emissions 
coefficients for eight products actually increase over time.

Motor gasoline and jet fuel are two products with frequent revisions in the emissions 
coefficients between 1980 and 2010; in 2019, they accounted for 22% and 5%, respec-
tively, of total CO2 emissions. These revisions were due to the phasing out of leaded

29



0 4 8 12
−10

−5

0

5

10

PC → Coal / EN

0 4 8 12
−10

−5

0

5

10

NC → Coal / EN

0 4 8 12
−10

−5

0

5

10

PC → Nat.Gas / EN

0 4 8 12
−10

−5

0

5

10

NC → Nat.Gas / EN

0 4 8 12
−10

−5

0

5

10

PC → Petrol./ EN

0 4 8 12
−10

−5

0

5

10

NC → Petrol./ EN

0 4 8 12
−10

−5

0

5

10

PC → Renewab./ EN

0 4 8 12
−10

−5

0

5

10

NC → Renewab./ EN

Figure 14: Impulse responses of energy shares (DLM)
Note: EN denotes total primary energy consumption. Solid lines are cumulative responses from (5). 
Dashed and dotted lines are block-bootstrapped one- and two-standard errors bands.

gasoline, varying aromatic hydrocarbons, the development of fuel additives and shifting 
from naphtha- to kerosene-based jet fuel (EIA, 2011). However, emissions from motor 
gasoline and jet fuel rise after positive NC shocks (available on request). As these re-
sponses go against the decline in total CO2 emissions in the baseline VAR, changes in 
the emissions coefficients of such products cannot explain the NC shocks.

Another perspective on the role of emissions coefficients comes from comparing the 
IRFs of emissions and energy consumption from the main energy sources. The minimal 
differences between the two types of IRFs in Figure 13 imply that even at the level 
of major fossil fuels, the ratio of emissions to energy consumption (aka the emissions 
coefficient) exhibits little v ariation. Therefore, we rule out the possibility of emissions 
coefficients being important drivers of NC shocks.

5.3 Substitution to cleaner energy sources

Shifts to less-polluting energy sources may reduce emissions without causing declines 
in total energy consumption and output. Reductions in the use of coal, the most polluting 
fossil fuel, have already made large contributions to U.S. emissions mitigation. In the 
2007-2019 period alone, CO2 emissions from coal declined by a billion metric tons 
(EIA, 2020). The EIA (2020) also estimates that changes in the electricity generation 
fuel mix reduced CO2 emissions in the residential and commercial sectors by 99 million
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metric tons in 2019. The empirical impacts of decarbonization on aggregate economic 
activity are less known.

We estimate cumulative IRFs of per capita coal, natural gas, petroleum and renew-

ables consumption (Figure 13) and their shares in total primary energy consumption 
(Figure 14). Consumption of all fossil fuels drops for a few quarters after a positive NC 
shock, while the responses of renewables are not significant. The energy shares remain 
fairly constant except in the very short run. Together, the IRFs reject changes in the 
energy mix as being likely drivers of NC shocks. Rather, they point to a reduction in the 
overall energy demand, consistent with the responses of total energy consumption and 
the energy price, as shown in Figure 8.

A strikingly different IRF pattern is generated by a positive PC shock. We observe 
a sustained increase in all three fossil fuels and a persistent decline in renewables. The 
PC shock triggers a significant r eallocation of energy consumption between coal and 
renewables. Recall that a positive PC shock is normalized to increase emissions and 
output. The linearity of (5) implies that a decrease in emissions corresponds to a neg-

ative PC shock and that the responses to a negative shock will take the opposite sign to 
those reported in Figures 13 and 14. Our results thus may be interpreted to suggest that 
a reduction in emissions through switching to less-polluting energy sources may also 
lower aggregate output.

6 Concluding remarks

Our research was largely motivated by the trade-off between protecting the environ-

ment and maintaining economic performance embedded in the literature on business 
cycles and environmental policy. We identified novel NC shocks, which by construc-

tion avoided this trade-off by inducing the opposite effects on GDP and emissions. Our 
identification w as b ased o n s tatistical r estrictions a nd i t i mposed n o p riors a bout the 
importance of NC shocks. Nonetheless, the NC shocks explained a large share of the 
variations in emissions. They also shared the characteristics of a structural shock to 
energy efficiency, which increased aggregate output but decreased energy consumption 
and prices. The sector-level analysis of emissions revealed that the NC shocks had the 
strongest relationship with the residential sector.
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Our results imply that structural models that omit NC-type disturbances, such as

energy-efficiency shocks, likely overestimate the cost of emissions mitigation. Since

these shocks have different impacts on emissions and GDP, optimal policy responses to

NC shocks would also likely be different from those to conventional macroeconomic

shocks. Further research is needed to evaluate this conjecture.

Our results also call for explicit and detailed modeling of the choices of different

energy users, especially of consumers. This approach would help devise effective poli-

cies to tackle emissions that originate from different sectors. The residential sector

is the most responsive to energy policies (e.g., Labandeira et al., 2020) and the costs

of behavioral interventions are low (e.g., Gillingham and Stock, 2018). Mandatory

energy-efficiency standards or voluntary labeling programs, such as ENERGY STAR,

are theoretically suboptimal to carbon pricing. However, these policies are generally

more politically accepted. We share the views expressed by Annicchiarico et al. (2021)

that incorporating non-pricing mechanisms, such as energy-efficiency standards, into

E-DSGE models would be a fruitful research area.
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Tables

Table 1: Adjusted R̄2 statistics from DLMs for energy consumption and emissions

Direct fossil fuel Total energy Total energy
consumption consumption CO2 emissions

(a) DLM with NC shocks only
Residential 0.241 0.550 0.579
Commercial 0.300 0.488 0.534
Industrial 0.028 0.039 0.050
Transportation 0.064 0.064 0.068
Electric Power 0.449

(b) DLM with NC and PC shocks
Residential 0.365 0.770 0.819
Commercial 0.489 0.723 0.808
Industrial 0.311 0.423 0.514
Transportation 0.286 0.290 0.277
Electric Power 0.674

Table 2: Posterior median PC and NC shocks and temperature indicators

PC shocks NC shocks
Weather indicator corr. std.error corr. std.error
Average temperature ◦F −0.131 (0.080) 0.321 (0.075)

Cold heating season −0.089 (0.079) 0.301 (0.068)
Warm heating season −0.092 (0.085) 0.280 (0.076)
Hot cooling season 0.058 (0.080) −0.019 (0.074)

Note: Standard errors are based on bootstrap sampling with replacement. Correlation coefficients for the
heating and cooling seasons are computed using only the values for those seasons.
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A Selection of prior distributions for ap and an
The priors for ap and an are two independent Student t distributions, with v degrees of
freedom, truncated to be positive. The prior density takes the form

p (A) =

{
f(ap;cp,σp,v)

1−F (0;cp,σp,v)
f(an;cn,σn,v)
1−F (0;cn,σn,v)

if ap > 0, an > 0,

0 otherwise,

}
,

where f (x; c, σ, v) is the density for a Student t variable with a location parameter c, a
scale parameter σ, and a degree of freedom v, evaluated at x,

f (x; c, σ, v) =
Γ
(
v+1
2

)
√
vπσΓ (v/2)

(
1 +

(x− c)2

σ2v

)−(v+1)/2

The cumulative distribution function is F (x; c, σ, v) =
∫ x
−∞ f (z; c, σ, v) dz.

We set v = 3, as it guarantees the existence of finite means and variances of the 
posterior distributions. The choice of c and σ is related to the estimates of the income 
elasticity of emissions. Many published estimates are between 0.4 and 1.0, although val-
ues as low as −0.5 and as high 3 have been reported in the literature (e.g., Liddle, 2015, 
and references therein). However, empirical studies are not consistent with respect to 
the types of measures used, data frequency, time horizons of the elasticities, data sets, 
estimation methods, treatment of nonstationarity, heterogeneity and income endogene-
ity, nor are they consistent on the inclusion of additional control variables. Selecting 
a particular estimate for our study is not trivial since previous studies typically do not 
differentiate the sources of the GDP movements. Exceptionally, Burke et al. (2015) in-
strument external shocks to the GDP of a country by using the GDP growth of its export 
partners. Their instrumental variable strategy increases the estimated emissions-income 
elasticity from 0.52 (s.e. 0.07) to 0.86 (s.e 0.26).

To overcome the lack of conditional emissions-income-elasticity estimates, we se-
lect the mode parameters to partly reflect the scale of the d ata. We estimate an OLS 
regression of the growth rate of emissions on the growth rate of GDP and a constant for 
the periods of positive comovement, using the data shown by the blue circles in Figure 
1. The results imply cp = 1.50. Repeating the exercise for the periods of negative co-
movement (the red circles in Figure 1), we obtain cn = 1.75. In comparison, the OLS 
estimate for a similar regression using the data for the whole sample is 0.49. We cali-
brate the scale parameters to σp = 0.85 and σn = 0.7 so that ap and an take the values 
between 0.15 and 2.5 with an 80% probability.
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