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Abstract

This paper explores whether rational herding can generate endogenous business cycle fluc-

tuations. We embed a tractable model of rational herding into a business-cycle framework. In

the model, technological innovations arrive with unknown quality. New innovations are not

immediately productive and agents have dispersed information about how productive the tech-

nology will be. Investors decide whether to invest in the technology or not based on their

private information and the investment behavior of others. Herd-driven boom-bust cycles may

arise endogenously in this environment out of a single impulse shock when the technology is

unproductive but investors’ initial information is optimistic and highly correlated. When the

technology appears, investors mistakenly attribute the high observed investment rates to high

fundamentals, leading to a pattern of increasing optimism and investment until the economy

reaches a peak, followed by a crash as agents ultimately realize their mistake. As such, the theory

can shed light on bubble-like episodes in which excessive optimism about uncertain technology

fueled general macroeconomic expansions that were followed by sudden recessions. We calibrate

the model to the U.S. economy and show that the theory can explain boom-and-bust cycles in

line with historical episodes like the Dot-Com Bubble of the late 1990s. Leaning-against-the-

wind policies can be beneficial in this environment as they improve the diffusion of information

over the cycle.

JEL Classification: E32, D80

∗E-mail: eschaal@crei.cat, mt763@cornell.edu. We thank Vladimir Asriyan, Andy Atkeson, Olivier Coibion, Pablo
Fajgelbaum, Jordi Gali, Wouter den Haan, Nir Jaimovich, Francesco Lippi, Claudio Michelacci, Luigi Paciello, Ricardo
Reis, Victor Rios-Rull, Nancy Stokey, Victoria Vanasco, Jaume Ventura, Jon Vogel, Pierre-Olivier Weill and Yi Wen
for helpful comments. We thank seminar and conference participants at the University of Texas-Austin, Banco de
Chile, Banco de Portugal, University of Chicago, CIGS Tokyo, Cornell University, CREI, University of Edinburgh,
EIEF, Federal Reserve Banks of Philadelphia and St. Louis, HKUST, London School of Economics, Paris School of
Economics, Society for Economic Dynamics 2018, Sveriges Riksbank, UCLA and the University of Zurich. Edouard
Schaal acknowledges financial support from the Spanish Ministry of Economy, Industry and Competitiveness through
the program Proyecto I+D Excelencia 2017 (grant ECO2017-87827-P-AEI/FEDER, UE) and through the Severo
Ochoa Programme for Centres of Excellence in R&D (SEV-2015-0563).



1 Introduction

Several historical recessions were preceded by periods of massive investment in a new technology.

One salient example is the boom in information technologies in the 1990s that culminated with the

stock market crash of 2001 (“Dot-Com bubble”). While the internet had been invented years earlier

to connect academic and military networks, its commercial potential only became clearer in the

1990s, which led to large investments in communication networks, softwares, and IT equipments.

After a booming period with large capital inflows in the IT sector, the Dot-Com crash ensued

as some of the expected returns failed to materialize. Other boom-bust episodes follow similar

patterns. For instance, the Roaring Twenties, a period of massive economic growth fueled by

technological innovations in many sectors such as car manufacturing, communication, aviation and

the chemical industry, ended in the Great Depression.1

Standard practice in modern business cycle analysis often treats the booms and the busts as

separate episodes, both driven by their own sequence of exogenous shocks. But the historical evi-

dence suggests that some booms and busts might be, instead, intrinsically linked as two sides of the

same coin. In that view, the “booms sow the seeds of the subsequent busts” (Beaudry et al., 2020),

and recessions should be analyzed through the lens of the preceding expansion. Distinguishing

what underlies these relationships is key to a deeper understanding of business cycle phenomena

and the conduct of stabilization policy.

This paper proposes a theory that can generate an endogenous boom-and-bust cycle out of a

single impulse shock, by which we mean a general economic expansion followed by a recession that

falls below the trend.2 To that purpose, we embed a model of herding into a standard business cycle

framework. In the model, random technological innovations arrive over time and agents can decide

whether to invest or not in the new technology. The payoff from investing is initially unknown and

investors use all available information to update their beliefs about the fundamental value of the

technology. Information comes from both public and private sources. Key to our mechanism is

the assumption that private signals can feature common noise. This assumption captures the idea

that investors collect information from similar sources (news media, market reports, etc), hence

that beliefs across investors can be correlated for reasons unrelated to the fundamental value of

the technology. Importantly, investors do not initially know the extent of that correlation but

progressively learn about it over time.

Agents also receive public signals. First, they can learn by observing the exogenous return on

their investment, which provides noisy information about the technology. They can also learn from

1Xiong (2013) documents several instances of boom-bust episodes that follow the introduction of new technologies.
2By “endogenous”, we mean that the entire boom-and-bust pattern is produced by the forces in the model. Our

theory still relies on shocks, however, but only one-time shocks and does not rely on a particular sequence of positive
then negative shocks. This approach is different from other theories of endogenous business cycles that generate deter-
ministic periodic or chaotic dynamics (see Boldrin and Woodford (1990); Benhabib (1992); Guesnerie and Woodford
(1992) for surveys).
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endogenous market outcomes such as aggregate quantities or prices. In the model, this amounts to

observing, with some noise, the mass of agents who invest in the new technology. As the individual

investment decisions reflect the private information of the agents, this public signal operates as a

social learning channel by aggregating some of the dispersed information for everyone to see.

How agents interpret this public signal is key for the emergence of boom-bust cycles. Such

cycles are caused in our model by what we refer to as “false-positives”: low realizations of the

technology fundamental accompanied by unusually large and positive realizations of the common

noise. When observing the large amount of investment induced by such false-positive shocks, agents

infer that private signals are positive. These signals, in turn, can be positive either because the

fundamental value of the technology is high, or because the correlated component of the private

signals is high enough to fool agents into believing that the technology is good. Investors cannot

tell these stories apart but, given that the false-positive shock is deemed unusual at first, update

their beliefs by increasing the likelihood of the high-technology state. More optimistic beliefs lead

to further aggregate investment next period, which, in turn, leads to even more positive beliefs

about the fundamental and so on. Through this positive feedback loop, the arrival of a low-value

technology can create a long-lasting boom as investors are fooled by the initial investment craze.

But agents are rational and understand the possibility that they can sometimes be mistaken.

As a result, they keep track in the background of the probability of being in a false-positive state,

which appears increasingly likely as time unfolds. At some point, the most pessimistic agents stop

investing and aggregate investment no longer suggests a high technology draw, leading to sharp

reversal in beliefs and a collapse of investment. We provide formal conditions under which these

boom and bust episodes are guaranteed to arise.

Several features of these boom-bust cycles should be highlighted. First, they are not driven by

a specific sequence of shocks. Instead, a unique initial draw is responsible for shaping the whole

cycle. The crash, in particular, is not triggered by an exogenous shock but arises endogenously

through the natural evolution of the model. In addition, the properties of the boom—its duration

and magnitude—have a causal impact on the properties of the bust. More generally, the model

provides a mechanism to generate bubble-like phenomena over the business cycle, which can be

used for quantitative and policy analysis.

Through the observation of endogenous public signals, our model generates a form of herding :

During the expansion phase, agents mistakenly follow the herd into an investment boom and a

diminishing measure of agents use their private information to go against the crowd. In that sense,

our paper relates to the original work by Banerjee (1992), Bikhchandani et al. (1992) and Chamley

(2004) on herding and information cascades. The model we propose is, however, distinct along

several dimensions. In previous herding models, decisions are made sequentially and idiosyncratic

shocks govern the model dynamics. Both of these features, we believe, have prevented the intro-

duction of herding features into macroeconomic models, with the exception of Loisel et al. (2012)
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which we discuss below. In our model, instead, agents act simultaneously and learn from observing

aggregates, providing a simpler mapping into standard macroeconomic models. Second, boom-bust

cycles arise in traditional herding models only for specific sequences of shocks. In our model in-

stead, because the common noise adds a dimension of uncertainty , the boom-bust pattern emerges

endogenously in response to a single shock.

In the model, the amount of information that agents receive is endogenous and varies with the

cycle, which opens the door to a form of information cascades. When the public signals received up

to a certain date are very positive, most agents invest regardless of their private signals so that their

private information is not encoded into the public signal. Similarly, after a series of bad news, many

agents behave as if they disregarded their private information when deciding not to invest, making

aggregate investment also uninformative. As a result, the model is able to generate sustained

booms and rapid busts as periods with massive investment restrict the flow of information, but

slight downturns can suddenly reveal more information on the true state of the world.

Due to this variable flow of public information, the model features an information externality:

Agents do not internalize how their private investment decisions affect the flow of public information.

We characterize the solution of a social planning problem and show that the planner pushes agents

to invest less during booms and more during downturns so as to optimize the amount of information

provided by aggregate investment. We also characterize the optimal investment tax that implements

the efficient allocation and show that it displays a leaning-against-the-wind characteristic with

investment taxes during booms and investment subsidies during downturns while the technology is

uncertain.

To explore how the evolution of beliefs generated by our learning model can produce a general

macroeconomic expansion followed by a recession, and to have a sense of the magnitude of the

boom-bust cycles generated by the theory, we embed our main mechanism into a basic model of the

business cycle, which models the technology adoption decision of entrepreneurs after the arrival of

a new technology. The model features two types of capital, traditional and information technology

capital (IT), and we assume that the new technology is more intensive in IT capital. As in the

basic model, there is a form of social learning as agents learn from observing the measure of new-

technology adopters. We use the New Keynesian framework as a backbone for two reasons. First,

nominal rigidities provide a way to obtain positive comovements across macroeconomic aggregate

out of belief shocks. Second, it allows us to discuss the implications of the model for monetary

policy.

We provide a back-of-the-envelope calibration of the model to match various moments of the

data that relate to the dot-com period. In particular, we discipline the amount of private in-

formation—a key moment for our mechanism—using dispersion in forecasts from the Survey of

Professional Forecasters (SPF). We also use data from the SPF to discipline investors beliefs about

the true value of the technology. Under our calibration, the model is able to generate a boom-bust
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cycle with positive comovement in consumption, investment, hours worked and output. The over-

investment into IT capital during the boom period causes the economy to contract significantly

when beliefs collapse as agents realize that resources were misallocated.

We also discuss our model’s implications for the conduct of monetary policy in the face of

boom-and-bust cycles and investigate whether a leaning-against-the-wind monetary policy would

be desirable. We find that monetary policy can dampen the cycle but has little effect on the

technology choice of the entrepreneurs and on the release of public information, in contrast to a

technology-adoption tax. The downside of these policies is that they also slow down the adoption

of good technologies.

1.1 Literature Review

Our paper relates to the original work on herding and information cascades of Banerjee (1992),

Bikhchandani et al. (1992) and Chamley (2004). Our model differs from these traditional models

of herding in the fact that agents act simultaneously and learn from observing the average action of

other players. While most of the earlier literature focus on a strict type of permanent information

cascade in which the flow of information is zero, our model features a “smooth” form of information

cascades because the information flow varies smoothly over the cycle. This feature is important as

it allows for the possibility of the economy endogenously exiting the cascade region, producing the

busts in our simulations. Our learning model is closer to Vives (1997) who studies an environment

in which agents with dispersed information learn by observing the average action across agents.3

Chapter 4 of Chamley (2004) briefly reviews a model close to ours in which privately informed

agents learn from the average action. As in our model, the amount of information released by the

public signal varies with the public beliefs. Our model also relates to Avery and Zemsky (1998),

who study herding in financial market and introduce multidimensional uncertainty to maintain the

existence of information cascades. Cipriani and Guarino (2008) show that herding can occur in

financial markets when investors have heterogeneous valuation for the asset.

To our knowledge, Loisel et al. (2012) is the only other macroeconomic model that features

herding phenomena. Their paper presents a simple general equilibrium model with overlapping

generations of finitely-lived entrepreneurs who are endowed with private signals and act sequentially

to invest in a risky asset. As in traditional models of herding, individual adoption decisions are

publicly observable and aggregate output in every period reflects investors’ idiosyncratic noise.

Boom-and-bust cycles arise in this model for specific exogenous sequences of shocks only.

This paper also relates to a literature in which the endogenous release of information generates

sudden collapses in economic activity, as in Caplin and Leahy (1994) and Veldkamp (2005). It

also relates to models in which the aggregation of private information leads to nonlinear aggregate

3Both Vives (1993) and Vives (1997) show that learning happens slowly in models in which privately informed
agents learn from aggregates.

4



dynamics (Fajgelbaum et al., 2017).

A large literature on financial bubbles consider models in which an asset trades above its

fundamental value (Samuelson, 1958; Tirole, 1985). In contrast, while our model provides a theory

why bubble-like phenomena may endogenously emerge and burst, the equilibrium is unique and our

model provides no distinction between fundamental versus “bubbly” equilibria. In that respect, our

work is closer to Abreu and Brunnermeier (2003) who analyze how bubbles burst. Our work also

relates to a strand of literature that studies the role of policy in environments with asset bubbles

(Gaĺı, 2014; Martin and Ventura, 2016; Asriyan et al., 2019).

Our paper is closely related to the literature on news or noise-driven business cycles (Beaudry and Portier,

2004, 2006; Lorenzoni, 2009; Jaimovich and Rebelo, 2009). Indeed, our model shares the view that

boom-bust cycles may be due to false-positives. In the news-shock literature, beliefs are driven by

the exogenous release of news at fixed dates. In contrast, in our model, the rise and fall in beliefs

that generate boom-and-bust cycles is endogenously driven by model forces, allowing us to explore

the model’s predictions on the frequency and timing of such cycles and providing a greater role

for stabilization policies. Christiano et al. (2008) considers the interaction of monetary policy and

boom-bust cycles driven by news shocks. Closer to our work, Benhima (2019) builds a two-period

model with dispersed private information in which an overly optimistic news shock about demand

can create a boom in period 1 and a bust in period 2 when truth is revealed.

Finally, our model predicts the emergence of recurring aggregate cycles. Recent work by

Beaudry et al. (2020) documents the existence of such cycles in U.S. data.

Section 2 introduces a simple version of our learning model that conveys the intuition of the

mechanism. Section 3 presents our business cycle model. We calibrate our model in Section 4 and

show several empirical implications of the mechanism. We also discuss the role of policy. The final

section concludes.

2 Learning Model

We start by presenting our mechanism in a simplified dynamic investment game. This allows us to

provide intuition for why social learning can lead to an endogenous herd-driven boom-bust cycle

out of a single impulse shock. It also permits us to derive additional analytical results and discuss

the model’s optimal policy implications.

2.1 Notation

In what follows, whenever F x (x̃) = Pr (x ≤ x̃) denotes the cumulative distribution function (CDF)

of some random variable x, fx refers to its associated probability density function and F
x
its

complementary CDF, F
x
(x̃) = Pr (x > x̃).
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2.2 Environment

Time is discrete and goes to infinity. The economy is populated by a unit measure of investors

indexed by j ∈ [0, 1]. Investors are risk-neutral and discount future consumption at rate 0 < β < 1.

Each investor has access to an investment technology that becomes available in period 0 and

provides a period return

Rt = θ + ut,

that is identical across agents and where θ ∈ {θH , θL}, θH > θL, is the permanent component of

the technology, and ut is an i.i.d transitory component drawn from the cumulative distribution

F u. Since ut is an i.i.d component that agents cannot forecast, we refer to θ as the technology

fundamental that agents try to learn about. Every period, investors must decide whether to invest

in the technology (ijt = 1) or not (ijt = 0). We start with the assumption that the investment

decision is binary but will relax it later in an extension. Investing is costly and requires the payment

of a cost c, identical across agents, every period. We assume that agents have deep pockets and

ignore any form of budget or financial constraints. The total return to an investor j in any given

period t is therefore

yjt = ijt (Rt − c) .

2.3 Information

The permanent component θ of the investment technology is randomly drawn once and for all at

date 0. We denote by p0 the ex-ante probability that θ = θH . Investors cannot observe θ directly

but receive various private and public signals about it.

Private signals

First, we assume that agents receive a private signal sj at date 0, upon the arrival of the new

technology. Importantly, we allow these private signals to feature not only idiosyncratic noise but

also common noise. Common noise in private information can be justified by the fact that agents

use similar sources of information (mass media, internet) that may report noisy signals about the

initial success of the investment technology (e.g., benchmark tests). Common noise is key to our

mechanism as it introduces the possibility that the average belief about θ in the economy may vary

for reasons orthogonal to the true value of the fundamental. In other words, common noise is what

allows agents to be sometimes overly optimistic or pessimistic about the technology. It is crucial

for investors to mistakenly attribute high investment patterns to high fundamentals even though

the technology is bad in reality, fueling the initial stage of the boom and bust cycle.

This common noise is captured by the random variable ξ, distributed according to the CDF

F ξ. Formally, we assume that the private signal sj is drawn from the CDF F sθ+ξ (s) = Pr (sj ≤ s),
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where {F sx}x∈I is a family of distributions. To prevent the possibility of trivial learning, we make

the assumption that F sx has full support over R, i.e., f sθ+ξ > 0 everywhere. Finally, in order to

guarantee some monotonicity in learning, we assume that the family {F sx}x∈I satisfies the monotone

likelihood ratio property (MLRP). That is, for x1 < x2 ∈ I and s1 < s2, we must have

f sx2 (s2)

f sx1 (s2)
≥
f sx2 (s1)

f sx1 (s1)
. (MLRP)

Intuitively, the MLRP condition guarantees that a high signal s is more likely to be coming from

a high realization of x = θ + ξ. In other words, an investor observing a high private signal sj will

become more optimistic and will put a higher probability on the value of the technology θ, or the

common noise ξ, being high.

Example. In most of our examples below, we will use additive private signals so that

sj = θ + ξ + vj , with vj ∼ iid CDF F v. (1)

Well-known distributions that satisfy the MLRP condition include the exponential, binomial,

poisson or the Gaussian distributions.

Public signals

In addition to observing their initial private signal, investors collect public information over time

by observing market activity and returns. We first assume that all agents observe the return on

investment Rt. Since the transitory component in the investment return ut is unknown to agents,

the total return Rt offers an exogenous noisy signal about θ, which provides a constant amount

of information over time. Second, and more importantly for our mechanism, we introduce a form

of social learning in the economy by allowing investors to observe an endogenous signal which

partially aggregates agents’ private information. Specifically, we assume that investors receive a

noisy measure of the total number of investing agents mt, which we define as follows:

mt =

∫ 1

0
ijtdj + εt, with εt ∼ iid CDF F ε. (2)

The noise εt can be interpreted as coming either from measurement error or from the presence of

noise traders that make aggregate variables less informative. The presence of noise is required in

our setting to prevent agents form learning too quickly (or even immediately in some cases, as we

discuss later). How much agents learn from investment activity in reality is a quantitative matter

that we discuss in section 4.

Before going further, we would like to highlight some unusual features of signal mt. In equilib-

rium, the decision to invest ijt will be a nonlinear function of the investor’s individual beliefs. In
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turn, beliefs will be a function of public information up to time t, {Rt−1,mt−1, . . . , R0,m0} and the

private signal sj. As a result, since public information is shared and can be filtered out to some

extent, mt partially aggregates the private information across the population of investors. To that

extent, mt has a useful information content regarding the fundamental θ and the common noise ξ.

Versions of an endogenous signal like mt have been studied in the literature, but usually under an

assumption of linearity (Vives, 1993, 1997; Amador and Weill, 2012). What makes the signal mt

particularly interesting in our setup is that it is nonlinear. Hence, the amount of information con-

tained in this signal will vary over time depending on the location in the state space (e.g., history

of shocks), opening up the possibility of a form of informational cascades in which agents neglect

their private information and aggregate investment becomes uninformative. Finally, because mt is

endogenous, its information content will react to changes in the environment providing a basis for

government intervention.

2.4 Belief Characterization

There are two aggregate shocks in this economy: the fundamental θ and the common noise ξ. The

beliefs of an individual investor j are described by a joint probability distribution that we denote

by

πjt

(

θ̃, ξ̃
)

= Pr
(

θ = θ̃, ξ ∈
[

ξ̃, ξ̃ + dξ̃
]

| Ijt
)

,

in which we explicitly allow for ξ to take a continuum of values and where Ijt is agent j’s information

set at date t. Since investors receive different private signals, we should in principle keep track of

the whole distribution of beliefs in the economy (i.e., a distribution over distributions). Fortunately,

the information structure is simple enough that the model lends itself to a great simplification. As

in Chapter 3 of Chamley (2004), it is enough to keep track of only one set of time-varying beliefs,

the public beliefs πt

(

θ̃, ξ̃
)

= Pr
(

θ = θ̃, ξ ∈
[

ξ̃, ξ̃ + dξ̃
]

| It
)

, that correspond to the beliefs of an

outside observer who only has access to public information It at time t, which is the collection of

past investment returns and measures of investors:

It = {Rt−1,mt−1, . . . , R0,m0} .

In comparison to this outside observer, an investor’s information set includes in addition the private

signal sj, so that Ijt = It ∪ {sj}. Investor’s individual beliefs can easily be recovered from public

beliefs using Bayes’ rule and the private signal sj, according to

πjt

(

θ̃, ξ̃
)

=
πt

(

θ̃, ξ̃
)

f s
θ̃+ξ̃

(sj)
∫
πt (θ, ξ) f sθ+ξ (sj) d (θ, ξ)

. (3)
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This simplification comes from the fact that only public information evolves over time. Indeed,

since the private signal distribution f sθ+ξ is constant and known up to the realization of θ and ξ, it

is easy to recover the entire distribution of private beliefs across investors for a given combination

of (θ, ξ) at any point in time. As a result, the only object that we need to keep track of is the

public belief function πt.

2.5 Timing and Investment Decision

The timing is as follows. At date 0, the fundamental θ, the common noise component ξ and the

private signals sj are drawn once and for all. At date t ≥ 0,

1. Each agent chooses whether to invest or not based on the individual beliefs πjt,

2. Investment returns are realized,

3. All agents observe {Rt,mt}, update their beliefs and move to the next period.

The investment decision can be characterized in an easy way. Because returns accrue in the same

period as the investment is made, the investment decision is a simple static problem. Investor j

invests in period t if and only if

E [Rt | Ijt] ≥ c. (4)

Defining

pjt = Pr (θ = θH | Ijt) =

∫

πjt (θH , ξ) dξ (5)

as the probability that investor j puts on being in the high technology state, the investment decision

(4) is characterized by a cutoff rule p̂ in the space of beliefs. That is, an agent invests if and only

if pjt ≥ p̂ where p̂ is the belief of the marginal investor, such that

p̂θH + (1− p̂) θL = c. (6)

The total measure of investing agents can then be expressed as

mt = me (πt, θ, ξ) + εt (7)

where me (πt, θ, ξ) =

∫

1I (pj (πt, sj) ≥ p̂) f sθ+ξ (sj) dsj. (8)

The variable me is the expected measure of investing agents for a given state of the world (θ, ξ),

excluding the noise traders. Importantly for what follows, me is an object that any agent in the

economy can compute. Knowing the structure of the model, all agents agree on the cutoff p̂. Second,

thanks to the dichotomy between public beliefs and a fixed distribution of private signals f sθ+ξ, all

agents can compute the distribution of beliefs pj given a realization of θ and ξ. This property is

essential to tractably solve the inference problem to which we now turn.

9



2.6 Evolution of Beliefs

After characterizing the investment decision, we may now describe how beliefs are updated over

time. Each end of period brings two new public signals for investors to process: Rt and mt. The

updating of information with Rt is straightforward as it is a simple exogenous signal. Applying

Bayes’ rule, we define the interim beliefs at the end of the period as

πt|Rt

(

θ̃, ξ̃
)

=
πt

(

θ̃, ξ̃
)

fu
(

Rt − θ̃
)

∫
πt (θ, ξ) fu (Rt − θ) d (θ, ξ)

. (9)

We now turn to incorporating the information contained in mt. Solving the inference problem from

an endogenous signal like mt can be complicated in general because individual decisions need to be

inverted to back out their information content about θ and ξ. Fortunately, and as highlighted at the

end of the previous section, the inference problem is greatly simplified in our environment since the

expected measure of investors me in every state of the world is a simple function of public beliefs πt

(known by everyone) and of the true realization of (θ, ξ). Investors solely differ in their assessment

of the probability of each state (θ, ξ), encoded in πjt, but there is no infinite regress problem

arising from the necessity to forecast the beliefs of agents after any history of shocks.4 Because of

the equilibrium structure of signal (7), Bayes’ rule gives us the simple updating equation

πt+1

(

θ̃, ξ̃
)

=
πt|Rt

(

θ̃, ξ̃
)

f ε
(

mt −me
(

πt|Rt
, θ̃, ξ̃

))

∫
πt|Rt

(θ, ξ) f ε
(
mt −me

(
πt|Rt

, θ, ξ
))
d (θ, ξ)

. (10)

2.7 Equilibrium

We are now ready to define an equilibrium in this economy.

Definition 1. An equilibrium consists of public beliefs πt for all t, a distribution of private beliefs

{pjt}j∈[0,1] for all t, and an expected mass of investors me
t for all t, such that, given shocks, 1) the

distribution of private beliefs is derived from the public beliefs through (3) and (5); 2) the expected

mass of investors is consistent with investors decisions under their private beliefs as in (8); and 3)

the public beliefs follow their law of motion (9)–(10) with mt given by (7).

With that definition in hand, the following proposition characterizes the set of equilibria.

Proposition 1. There exists a unique equilibrium.

4In the absence of the simplifications from our information structure, learning from mt would require to compute
a hypothetical mt and its probability in every state of the world after every history of shocks. Computing mt, in turn,
would require forecasting the beliefs of each individual at each date — themselves being the product of a sequence
of individual inference problems. Townsend (1983) provides a famous example why this sort of inference often leads
to an intractable infinite regress problem.
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The proof of the proposition is straightforward. It shows that from a given distribution of public

beliefs πt, there is a unique mapping, given the realization of the shocks, to next period’s public

beliefs πt. Starting from the initial π0 we can therefore reconstruct the unique equilibrium sequence

{π0, π1, . . . }. All other equilibrium quantities such as the measure of investors and distribution of

private beliefs can be reconstructed from the public beliefs in a unique way.

2.8 Example: the 3-state model

We are now fully equipped to analyze the dynamics implied by the model. We start with a simple

special case that conveys the intuition about the emergence of i) a smooth form of information

cascades and ii) endogenous booms and busts.

We temporarily make the simplifying assumption that the pair (θ, ξ) can only take three different

values, the minimal number of states required for endogenous boom-bust cycles to emerge in our

model. Specifically, we assume

(θ, ξ) ∈ {(θL, 0) , (θH , 0) , (θL,∆)} with θL < θL +∆ < θH .

We refer to (θL, 0) as the low-technology state, (θH , 0) as the high-technology state and (θL,∆)

as the false-positive state. The latter is the one of interest as it is the state that will trigger a

boom-and-bust cycle by having investors mistakenly assess the technology to be of high quality

before later realizing their mistake.

Having only three states reduces the number of state variables required to keep track of the

belief distribution πt. Public beliefs are now summarized by two variables

pt ≡ πt (θH , 0) and qt ≡ πt (θL,∆) ,

and the corresponding updating rules can be found in Appendix A.1.

We now establish a first simple result. Under our assumptions, the individual beliefs about the

probability of the high technology, pjt = πjt (θH , 0), is increasing in the private signal sj. As a

result, the investment decision can be further characterized by a cutoff rule ŝ (pt, qt) in terms of

private signals, which simplifies the expression of the expected measure of investing agents me as

the following Lemma shows.

Lemma 1. In the three-state model, for θL < θL + ∆ < θH and {F sx} satisfying the MLRP

condition, the optimal investment strategy is characterized by a cutoff rule in the private signal

ŝ (pt, qt), decreasing in pt. That is, an agent invests if and only if sj ≥ ŝ (pt, qt). The expected

measure of investing agents is given by

me (pt, qt, θ, ξ) = F
s
θ+ξ (ŝ (pt, qt)) .
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Learning from mt

To develop intuition on the way learning from the measure of investors works in this economy, we

propose an example in Figure 1. Panel (a) displays the distribution of private signals sj in the

three states of the world. Due to the MLRP assumption, the three distributions are ordered in a

first-order stochastic dominance sense. The expected measure of investing agents me is represented

as the mass of agents located to the right of cutoff ŝt. We can see that me is small in the low-

technology state (θL, 0) (in red), that agents expect more investment in the false-positive state

(θL,∆) (in green), and that it is at its largest in the high-technology state (θH , 0) (in blue).

The three measures me being computed, we then present in panel (b) the three potential

distributions of mt in the three states of the world assuming that the noise ε is normally distributed

with mean 0. As the graph illustrates, agents expect very different distributions of investment mt,

each centered on their expected value me, in the different states of the world (θ, ξ). We can split the

mt-space into three regions that indicate which state is attributed more probability after observing

mt. For instance, for low mt the likelihood of state θL is greater than that of the other states,

so information updating will attribute it a higher probability. The two other states, (θL,∆) and

(θH , 0), have their own higher likelihood region that are also represented on the graph. Importantly

for the emergence of our boom-and-bust cycles, beliefs about the high state will tend to increase

after observing high realizations of mt. It is in that sense that the model displays a form of

“herding”: agents become more optimistic (resp. pessimistic) after seeing high (resp. low) patterns

of investment, leading them to make inefficient investment decisions, as we will see in our welfare

analysis.
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ŝt

F
s

θH
(ŝt)
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Notes: Panel (a) on the left displays the distribution of private signals sj across the population in the three possible states of the

world along with the corresponding expected measures of investing agents me
t = F

s
θ+ξ (ŝ (pt, qt)) for some public beliefs (pt, qt).

Panel (b) on the right shows the distribution of mt = me
t + εt in the three states of the world assuming some Gaussian-like

distribution F ε with mean 0 and variance σ2ε .

Figure 1: Private beliefs and expected measure of investors
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Signal-to-noise ratio and smooth information cascades

In the traditional herding literature (Banerjee, 1992; Bikhchandani et al., 1992), information cas-

cades arise when public beliefs are so extreme (pt extremely high or low, because of a particular

sequence of investment decisions), that agents end up “disregarding” their own private information.

That is, agents invest (or not) no matter what their private information is. As a result, observing

previous investors’ decisions becomes uninformative and the economy may end up being stuck in a

situation with wrong beliefs forever.

Because social learning takes place through the observation of the continuous variable mt rather

than the sequence of binary decisions by previous investors, the emergence of information cascades is

somewhat different in our setup. We show nonetheless that a similar form of “smooth” information

cascades may arise depending on assumptions about signal distributions.

The bottom-right panel of Figure 2 represents how the measure of investing agents mt varies

in expectation, along with its ±1-standard deviation error bands, as a function of the public belief

pt, holding qt constant in the background. These curves are drawn by first connecting a given level

of pt in the bottom-right panel to the equilibrium signal threshold ŝ (pt, qt) (upper-right panel),

itself connected to the upper-left panel which shows how the measures me = F
s
θ+ξ (ŝ) vary with the

cutoff ŝ. As the bottom panel shows, the expected measure of investing agents me is a monotonic

transformation of the CDF F sθ+ξ in the three different states.

The key feature to take away from this graph is that the signal-to-noise ratio in mt varies

nonmonotonically with the public beliefs. For intermediate values of pt, the three expected measures

me are far apart so that despite the noise εt, observingmt is highly informative about the underlying

state θ+ ξ (i.e., the signal-to-noise ratio is high). For pt large (resp. small) region, almost all (resp.

no) agents invest, the three measures converge to lim
ŝ→∞

F
s
θ+ξ (ŝ) = 1 (resp. 0), so that the signal

mt is dominated by noise and becomes uninformative about the underlying fundamentals (i.e., the

signal-to-noise ratio is low). Note that this result is not an artifact of specific distributions or

functional forms but is instead a general feature of the model as long as ŝ varies sufficiently on the

support of F
s
θ+ξ.

The model offers a continuous and smooth analog to informational cascades when the equilib-

rium ŝ reaches the extreme regions of the state space where learning is slow. Suppose for instance

that public beliefs are optimistic(pt high) so that ŝ is very low. In such a situation, almost all agents

act in the same way and invest in the new technology. Only few agents use their private informa-

tion to “go against the crowd” and do not invest: the most pessimistic ones that have received a

particularly low private signal. Unfortunately, their measure is so low that they are hard to detect

when looking at the aggregate investment patterns. As a result, markets are nearly uninformative

and beliefs can remain wrong for an extended period of time. The main difference with traditional

herding models is that, under the assumption that private signals have full unbounded support,
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Notes: The top-left panel displays the distribution of private signals in the three states of the world along with the expected

measure of investing agents me
t = F

s

θ+ξ (ŝt), as previously represented in Figure 1 rotated by 90◦. The top-right panel displays

an example of equilibrium threshold ŝ (pt, qt) as a function of public belief pt. The bottom right panel shows how the measures

of investors mt = me
t + ε varies with public belief pt, keeping qt constant in the background, under the assumption that

εt ∼ N (0, σε). The mean me
t is represented with a continuous line and the corresponding ±1-standard deviation σε error bands

with dashed lines.

Figure 2: Measure of investors mt as a function of public belief pt

the information flow is never exactly 0 so that there is always some learning taking place through

mt and Rt. Such a smooth form of information cascades is of interest to us for two reasons: i)

it explains why the economy may remain for an extended period of time in the booming region,

where agents understand that they could be wrong in their assessment of the true state of the world

but invest nonetheless, ii) it opens the door to the economy endogenously exiting the information

cascade and crashing when some threshold in beliefs is reached, as we will now describe.

Endogenous boom-and-bust cycle

We now present simulations of the model to illustrate its ability to generate endogenous boom-and-

bust patterns out of a single impulse shock. We do not attempt to make a realistic calibration for
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the moment, but merely pick parameters so as to highlight the model’s properties. We will examine

later under what general conditions one should expect the highlighted phenomena to occur.

We present the impulse responses of the measure of investors (mt) and the public beliefs (pt,

qt), keeping all other shocks to their mean levels (e.g., εt, ut = 0), when the economy is in the

false-positive state (θ, ξ) = (θL,∆), the case of interest for our purpose. Figures 9 and 10 in the

Appendix show the economy’s response to the high-technology and low-technology states.5

Figures 3 and 4 present two examples of endogenous boom-and-bust patterns that may arise in

the model, depending on whether or not the economy falls into an information cascade. In both

examples, the emergence of boom-and-bust patterns hinges on two key assumptions: (i) θL + ∆

needs to be sufficiently close to θH , so that the two states are hard to distinguish; (ii) the prior q0

on the false-positive state (θL,∆) needs to be sufficiently low relative to the true positive (θH , 0)

for agents to initially attribute most of the rising investment pattern to the true positive state.

(a) Measure of investing agents
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(b) Evolution of public beliefs
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Notes: The simulation was performed with parameters: θH = 1, θL = 0.5, ∆ = 0.4, c = 0.80. The priors are set to p0 = 0.25

and q0 = 0.05. All the distributions are Gaussian: F s
θ+ξ

∼ N (θ + ξ, σs), F ε ∼ N (0, σε) and Fu ∼ N (0, σu) with standard

deviations σs = 0.5, σε = 0.2, σu = 2.5.

Figure 3: Slow boom, sudden crash

Figure 3 presents the evolution of an economy with a high cost of investing c. When the econ-

omy starts in period 0, the measure of investing agents (panel 3a) is low (because of the high cost

c) but higher than expected. Seeing an unusually high investment rate, agents understand that

it is unlikely to come from the low state and they reduce the probability assign to it (red curve

in panel 3b). Agents understand that high investment in the model could arise either from the

high-technology or the false-positive states. As a result, agents revise upward their probability as-

sessments of both states (pt and qt rise). Importantly, however, given that agents start with a low

prior on the false-positive state from happening, the observed high level investment is mostly at-

tributed to the high-technology state, so the rise in pt dominates their expectation. Consequently,

agents become more optimistic overall, investment continues to grow, and the rising investment

5With our parametrization, these cases are relatively uninteresting: learning is fairly quick, and the dynamics are
close to the full information case.
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pattern, in turn, leads to further upward revisions in expectations, seemingly confirming the as-

sessment that the economy is in the high state. We refer to this first stage of the cycle, characterized

by the joint rising evolution of investment and beliefs (pt, qt), as the “growth stage”.

Being rational, agents do understand the possibility that they may be mistaken and keep track

of the probability of the false-positive state qt in the background, which also rises throughout

the growth stage. Since signals are unbiased along the impulse response path, the belief qt rises

in fact faster than pt despite starting from a lower prior. Therefore, there comes a time when

qt is so high that agents become reluctant to invest and aggregate investment begins to decline.

This is the beginning of the “crash” stage, which arises at an endogenous date without the need

of an exogenous trigger. As investment reaches a peak of about 30% given our parametrization,

the measure of investing agents mt attains the intermediate region depicted in Figure 2 where it

becomes more informative. As a consequence, agents learn the truth faster, investment drops, and

the probability pt starts declining until a belief reversal occurs later when the belief qt takes over.

Note that the truth is always learned in the end because of the strictly positive information flow

and the law of large numbers.

This example shows that the model is able to generate asymmetric cycles. The growth stage

is slow due to the low information flow when mt is close to 0. The crash, on the other hand, is

more sudden because it occurs in the region where i) uncertainty between the high state and the

false-positive state is high (pt and qt are close, so beliefs are more responsive to new information),

ii) the signal mt is more informative at the peak.6

(a) Measure of investing agents

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1
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Notes: The simulation was performed with parameters: θH = 1, θL = 0.5, ∆ = 0.4, c = 0.79. The priors are set to p0 = 0.25

and q0 = 0.05. The distributions of all signals are Gaussian with standard deviations σs = 0.5, σε = 0.2, σu = 2.5. The shaded

area corresponds to the informational cascade period, loosely defined as periods when mt ≥ 75% in which learning is markedly

slower, given our calibration.

Figure 4: Endogenous boom and bust with information cascade

Whether the growth stage gives way to a sudden collapse depends on the parametrization of the

model. Figure 4 depicts an example of a cycle that reaches the low-informativeness region, in which

6A similar mechanism is at work in Veldkamp (2005) where crashes, as they happen when information flows more
rapidly, occur suddenly but in response to exogenous shocks.
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case the economy goes through an information cascade before the crash. This simulation uses the

same parametrization as Figure 3, but with a slightly lower cost c so that investment rises faster and

reaches higher levels than in the previous example.As a result, there comes a time at the end of the

growth stage when agents are so optimistic that mt reaches the extreme right region in the bottom

panel of Figure 2 where it becomes uninformative. The economy thus enters a period akin to an

information cascade, as described earlier, where almost all agents invest except for a few who prefer

to stay away due to their particularly pessimistic private information. Through this mechanism, the

economy may remain stuck for a long period of time with wrong beliefs and excessive investment.

Because the flow of information is never exactly zero, the economy eventually exits the cascade.

This event occurs when the belief about the false-positive state qt reaches a threshold at which a

sufficient fraction of agents stop investing, bringing back the economy to the region where mt is

informative. The crash takes place in a manner similar to the previous example: because of the

high flow of information, beliefs converge more quickly to their true values and a belief reversal

occurs in the later stages. The way the economy exits the cascade is reminiscent of the mechanism

proposed by Caplin and Leahy (1994) and its reinterpretation in Chapter 4 of Chamley (2004).

2.9 Continuous Case

How general are the phenomena highlighted in the 3-state model? In this section, we discuss under

what conditions endogenous boom-and-bust cycles may arise in a less restrictive environment.

First, we relax the three-state assumption and return to the specification where ξ can take

any value, including a continuum. Second, we wish to understand how our two key conditions,

(i) θL + ξ close to θH and (ii) low q0, translate to the more general case. To build intuition on

this issue, Figure 5 shows the impulse responses of the economy in the continuous-ξ case assuming

that ξ is independent of θ and is normally distributed with mean 0 and standard deviation σξ.

As in the previous section, we present the response of the economy in the low-technology state

θ = θL but we vary the size of the ξ shock. Four cases are represented as multiples of the standard

deviation so that ξ = nσξ with n ∈ {1.5, 1.9, 2, 2.1}. The figure shows very distinct behaviors

depending on the size of the shock. When the shock is relatively small, ξ = 1.5σξ (yellow curve),

the economy does not experience any herding behavior in which the high initial investments leads

to rising optimism. Agents put a sufficiently high likelihood on this event and are, consequently,

able to detect it relatively quickly. Things start to differ as we increase the size of the shock. For

an intermediate-sized shock, ξ = 1.9ξ (red curve), the economy begins to experience a boom-bust

cycle of the sort we described earlier. Because of the low probability of experiencing a shock close to

two standard deviations, agents are initially fooled by the high investment rates and the economy

enters a growth stage with rising optimism and investment. The growth stage is slow and the crash

occurs around date t = 18 without experiencing a cascade, as in Figure 3. When the size of the
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shock is larger, ξ ≥ 2σξ (green and blue curves), the rise in investment is so large that the economy

goes through an information cascade after experiencing a short growth stage, as in Figure 4. The

economy exits the cascade endogenously at a date which is further delayed as the size of the shock

increases.
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Notes: Panel (b) shows the overall probability of the high state pt =
∫

πt (θH , ξ) dξ. The simulation was performed with

parameters: θH = 1, θL = 0.5, ∆ = 0.4, c = 0.75. The priors are set to p0 = 0.25 and q0 = 0.05. All the distributions

are Gaussian as in Figure 3 with the additional assumption that ξ ∼ N
(

0, σξ
)

with standard deviations σs = 0.5, σε = 0.2,

σu = 2.5 and σξ = 0.25.

Figure 5: Boom-and-bust cycles in the continuous case

These simulations show that the dynamics depicted in the examples of Figures 3 and 4, in the

previous section, are not mere curiosities but regular fixtures of the more general model. Indeed,

the simulations show that the endogenous boom-and-bust phenomenon occurs whenever the shock

to ξ is unusually large, sufficiently so that agents underestimate its likelihood and initially attribute

the observation of high investment to the high-technology state. This shows a limit of the theory:

because their are rational, agents cannot make systematic mistakes in their assessment of state

probabilities, and this model only offers a theory of infrequent boom-and-busts.

The following proposition establishes this result formally in the Gaussian case. We show that

there always exists a sufficiently large shock in ξ to trigger a boom-and-bust cycle in beliefs, as

long as the exogenous signal coming from the observation of Rt is not too precise.

Proposition 2. In the Gaussian case, i.e., F ξ ∼ N
(

0, σ2ξ

)

, F s|θ, ξ ∼ N
(
θ + ξ, σ2s

)
, F ε ∼

N
(
0, σ2ε

)
, F u ∼ N

(
0, σ2u

)
, for θ and ξ independent and signal Rt sufficiently uninformative (σu

low), there exists a ξ such that all shocks ξ ≥ ξ generate a boom-and-bust cycle in the impulse

response of beliefs pt to a false-positive shock (θL, ξ).

2.10 Welfare

We now turn to the analysis of welfare in this economy. Since investors do not internalize that

their investment decisions affect the release of public information, the equilibrium is in general not

efficient and policy interventions can be beneficial. To show this formally, we introduce a social

planner that maximizes aggregate welfare under limited information. Specifically, we assume that
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the planner only observes the public signals and cannot rely on the private information of the

investors when making decisions. We impose these restrictions so that problem of the planner is

not trivial and that it resembles that of a government trying to design policy under uncertainty

about the true value of the new technology.

As in Angeletos and Pavan (2007), we assume that the planner seeks to maximize the sum of the

investors’ expected utility, where the expectation is computed according to the investor’s private

beliefs. Written in recursive form, the problem of the social planner is

V (I) = max
p̂
Eθ,ξ

[
∫

pj≥p̂
E [θ − c | Ij] dF

pj
θ+ξ (pj) | I

]

+ βEθ,ξ
[
V
(
I ′
)
| I
]

(11)

where I ′ is public information next period, which evolves according to the law of motion (10), and

where F
pj
θ+ξ (pj) is the CDF of the agents’ subjective probability that θ = θH when the true state

of the world is θ + ξ. The first term in (11) captures the current-period returns on investment of

letting only agents with private beliefs above p̂ invest. To compute that term, the planner first uses

the public beliefs I to evaluate the likelihood of being in a given state θ + ξ. Since the planner

knows the structure of the economy, it can then reconstruct the distribution F
pj
θ+ξ (pj) of private

beliefs in that state, which is needed to compute the mass of investors above p̂. The second term in

(11), the continuation value, captures the impact of a given investment threshold p̂ on the future

public information. It is this term that creates a gap between the equilibrium and the efficient

allocation. In the equilibrium, the actions of an individual investor have a negligible impact on the

release of information, so that each investor disregards that channel when making their decisions.

The planner, on the other hand, understands that by changing the cutoff p̂, the mass of investors

also changes and so does the release of public information.

Taking the derivative with respect to p̂ in (11) the first-order condition is

Eθ,ξ

[

(p̂θH + (1− p̂) θL − c) fpθ+ξ (p̂) | I
]

= β
∂Eθ,ξ [V (I ′) | I]

∂p̂
. (12)

The left-hand side of this equation reflects the expected cost of increasing the threshold p̂ at the

margin. If the true state is θ+ ξ, increasing p̂ at the margin pushes a mass fpθ+ξ (p̂) of agents away

from investing, each of which loses p̂θH + (1− p̂) θL − c in expected returns. The planner takes

the expectation of these terms over all θ+ ξ since it does not know the true state. The right-hand

side of the equation reflects the impact of increasing p̂ on the flow of public information that will

be released at the end of the period. By changing p̂, the planner can increase the gap between

the expected realizations of m in different states of the world. When it does so, m becomes more

informative since the exogenous noise ε is less able to drown the signal.

We can solve the planner’s problem numerically and go back to the boom-bust cycles explored

in Figure 4 to see how a social planner would deviate from the equilibrium. Figure 6 compares
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the efficient allocation (bold lines) with the equilibrium (thin lines). We see from Panel (a) that

in period 0 the planner is more aggressive than the private agents in pursuing the investment

opportunity: the initial mass of investors is 0.25 in the efficient allocation while it is only 0.15

in the equilibrium. The planner behaves in that way because it understands that the additional

investment releases valuable information. Indeed, we can see in Panel (b) that the public beliefs

move more rapidly in the efficient allocation. In particular, the planner learns quickly that the

low-technology state can be completely ruled out, as 1 − p − q declines sharply in the first few

periods. Since many agents invests under the planner’s chosen threshold ŝ, the likelihood of being

in the high-technology state increases, and the (mistaken) boom begins even though the the true

fundamental is θL. This example shows that while the planner behaves in a way that releases more

information, it is still fooled into believing that the new technology is great. As in the equilibrium,

the efficient allocation features herd-driven boom-bust cycles, but the busts happen faster here.

When the beliefs the public beliefs are very optimistic the planner pushes for less investment than

in the equilibrium so that information keeps being released. As a result, agents learn faster that

the true state of the world is θL and the boom comes to an end sooner.

(a) Measure of investing agents

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

(b) Evolution of public beliefs

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

p

q

1-p-q

Notes: Bold lines correspond to the efficient allocation and thin lines correspond to the equilibrium. The true value of

fundamental is (θ, ξ) = (θL,∆), the false-positive state. The simulation was performed with parameters: θH = 1, θL = 0.5,

∆ = 0.4, c = 0.79, β = 0.5. The priors are set to p0 = 0.25 and q0 = 0.05. The distributions of all signals are Gaussian with

standard deviations σs = 0.4, σε = 0.2, σu = 2.5.

Figure 6: Endogenous boom-and-bust in the efficient allocation

To better understand how the planner behaves in this economy, we can construct an opti-

mal investment tax that makes the equilibrium and the efficient allocation coincide, as the next

proposition shows.

Proposition 3. The efficient allocation can be implemented as an equilibrium by an investment

tax

τ∗ =
(

Eθ,ξ

[

fpθ+ξ (p̂) | I
])−1

β
∂Eθ,ξ [V (I ′) | I]

∂p̂
, (13)

and a lump-sum transfer to all investors.
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The optimal tax τ∗ balances the distortion in investment it creates (first term in the product)

with the potential benefit on information acquisition (second term). Figure 7 shows this optimal

tax over time in our 3-state example. At time t = 0, investors are quite pessimistic about the new

technology and would rather not invest. But some amount of investment would release valuable

information so the optimal tax τ∗ is initially negative. Soon after, between periods t = 3 and

t = 5, the planner faces the opposite problem. Investors believe that the new technology is good

and invest too much. The optimal tax is therefore positive to increase the flow of information. At

t = 5, the planner is sufficiently convinced of being in state θH that acquiring more information

loses its value and the planner slowly remove the tax. Things change at about t = 8. The newly

released information suggests that we might not be in θH after all and the likelihood of the false-

positive state rises. Indeed we can see that p decreases and q increases in Panel (b) of Figure 6. As

a result, the value of information increases as well and the optimal tax increases to incentive agents

to invest less. The tax starts to decline again around t = 17 once the planner is getting convinced

that we are actually in the false-positive state and the value of information shrinks. Finally, the

tax turns negative once again as agents massively refuse to invest while some investment would

provide valuable information. After t = 35, the public beliefs are sufficiently certain that the true

state is (θL, ξ), there is no value in obtaining additional information and the optimal tax goes to

zero.

As we can see, the tax incentivizes agents to behaves differently than the crowd in what amounts

to a leaning-against-the-wind pattern: The tax is negative when no agent wants to invest, and

positive when agents invest massively. We will see in our quantitative model that these same forces

have important consequences for the conduct of monetary policy.
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Notes: Optimal tax to implement the efficient allocation after the same shock as (6). The simulation was performed with

parameters: θH = 1, θL = 0.5, ∆ = 0.4, c = 0.79, β = 0.5. The priors are set to p0 = 0.25 and q0 = 0.05. The distributions of

all signals are Gaussian with standard deviations σs = 0.4, σε = 0.2, σu = 2.5.

Figure 7: Optimal tax over time
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3 Business Cycle Model with Herding

After exploring the mechanism in the simple model, we now embed the same economic forces

in a business cycles framework. Our objective is threefold. First, our previous setup is highly

stylized and we want to examine the robustness of the mechanism in a more realistic environment

that involves more moving parts (e.g., prices and constraints). Second, we want to investigate

under what conditions the evolution of beliefs characterized in the previous section may lead to

a macroeconomic expansion followed by a contraction deep enough to go below the trend. This

requires additional ingredients as we will now discuss. Finally, a more realistic setup is required if

we want to explore the quantitative implications of the theory.

3.1 Foreword

Generating business cycle fluctuations out of belief shocks has been the focus of the news (or

noise)-driven business cycle literature since Beaudry and Portier (2004) and recently reviewed in

Beaudry and Portier (2014). A key lesson from this literature is that standard models have dif-

ficulty generating positive comovements across macroeconomic aggregates out of sheer optimism,

particularly between consumption and investment.

The failure to generate positive comovements stems from two main reasons. First, there is

a static problem, originally identified by Barro and King (1984), due to the intratemporal labor

market equilibrium: when agents become more optimistic about technology, the expected higher

income encourages agents to cut on their labor supply which leads to a contraction in output.

Second, there is a dynamic problem arising from standard parametrizations with intertemporal

elasticity of substitution of consumption less than 1 (e.g., CRRA utility function with relative

risk aversion greater than 1): anticipating higher wealth, agents smooth consumption by moving

resources from the future to the present and disinvest in response to a positive belief shock.

To circumvent the first difficulty, we follow Lorenzoni (2009) and introduce price stickiness.

With price rigidities, a positive belief shock can be expansionary as long as monetary policy is

sufficiently accommodative. In that case, firms fulfill the higher demand and a fall in the real interest

helps sustain the expansion in demand due to optimistic expectations. We solve the second difficulty

by proposing a model of technology adoption with two types of capital: a new-technology-specific

capital (e.g., IT capital) and a traditional form of capital. Assuming that the new technology is

intensive in IT capital, a rise in IT investment is a requisite for agents to benefit from the innovation.

The addition of capital adjustment costs, as in Jaimovich and Rebelo (2009), to prevent a steep

decline in traditional capital suffices to guarantee a joint increase in aggregate consumption and

investment.
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3.2 Household

There are four types of agents: i) a representative household, ii) entrepreneurs, who face a technol-

ogy adoption choice, iii) retailers, who are the only agents facing price rigidities, and iv) a monetary

authority. The household lives forever, consumes, supplies labor and is the owner of all the firms

and capital stocks in the economy. The preferences of the household are given by

E

[
∑

βt

(

C1−γ
t

1− γ
−
L1+ψ
t

1 + ψ

)]

, γ ≥ 1, ψ ≥ 0,

where Ct is the consumption of the final good and Lt is labor. The household can save in a risk-

free one-period nominal bond, Bt, and in two different forms of capital: a traditional type (T) in

quantity KT
t and a new-technology-specific capital (IT) in quantity KIT

t . The household is subject

to the real budget constraint

Ct +
∑

i=T,IT

Iit +
Bt
Pt

= wtLt +
∑

i=T,IT

zitK
i
t +

1 + rt−1

1 + πt

Bt−1

Pt−1
+Πt,

where Iit , i = T, IT , is the investment in each capital type, zit the corresponding real rental rate,

wt the real wage, Πt the total profits, rt−1 is the nominal interest rate on government debt issued

at date t− 1, Pt is the nominal price level and 1 + πt = Pt/Pt−1 the inflation rate.

For the reasons invoked earlier, agents face adjustment costs in capital in the same form as in

Christiano et al. (2005). The law of motion for each type of capital, i = T or IT , is given by

Ki
t+1 = (1− δ)Ki

t + Iit

(

1− S

(
Iit
Iit−1

))

, S (x) =
κ

2
(x− 1)2 ,

where κ ≥ 0 is a parameter that determines the size of the adjustment costs.

3.3 Technology

There are four sectors: i) an entrepreneur sector, ii) a wholesale sector, iii) a retail sector and iv) a

final good sector. The most important one, the entrepreneur sector, is the analog of the investment

model from section 2.

Entrepreneur sector

There is a unit continuum of entrepreneurs indexed by j ∈ [0, 1] who are monopolistic producers

of differentiated varieties sold to the wholesale sector. Until date 0, entrepreneurs have access to

a unique “old” production technology, which is Cobb-Douglas in some capital bundle Ko
jt, to be
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described shortly, and labor Lojt,

Y o
jt = Ao

(
Ko
jt

)α (
Lojt
)1−α

, 0 ≤ α ≤ 1.

In order to abstract from standard real business cycle-like fluctuations, we assume that the “old”

TFP, Ao, is constant over time. Unexpectedly, at date 0, a “new” technology arrives with production

function

Y n
jt = Ant

(
Kn
jt

)α (
Lnjt
)1−α

, 0 ≤ α ≤ 1.

The TFP of the new technology Ant is characterized by a constant fundamental θ ∈ {θH , θL},

θH > θL, whose value is initially unknown. Importantly, the new technology is not immediately

productive. We make the assumption that the new technology is initially as productive as the old

one, Ant = Ao, until it matures with some fixed probability λ > 0. Upon maturation, the true

nature of the technology is revealed. Maturation is a one-time event and all uncertainty is resolved

afterwards. That is,

Ant =







Ao before maturation

θ after maturation.

In addition to differing in TFP, the two technologies differ in the capital bundle they use as

input. The capital bundle used by each technology i = o, n is given by

Ki
jt =

(

ωi
(
KIT
it

) ζ−1
ζ + (1− ωi)

(
KT
it

) ζ−1
ζ

) ζ

ζ−1

, ζ > 0, (14)

with the assumption that the intensity in IT capital is greater for the new than the old technology,

1 ≥ ωn > ωo ≥ 0.

After date t ≥ 0, entrepreneurs face a technology choice problem. We assume that a fraction 0 ≤

µ ≤ 1 of entrepreneurs are “noise entrepreneurs”, that is, they are clueless regarding technological

adoption and behave randomly. Specifically, we assume that a fraction εt of them adopt the new

technology, where εt is i.i.d, distributed according to CDF F ε over support [0, 1]. The remaining

1−µ of entrepreneurs are rational and choose the best of the two technologies based on public and

private information. There is no cost of switching, so the decision for entrepreneur j is static:

ijt = argmax
ijt∈{0,1}

(1− ijt)E [Πot |Ijt] + ijtE [Πnt |Ijt] ,

where Πit, i = o, n, are the profits from using technology i, Ijt is the information set of entrepreneur

j, and ijt is a dummy capturing the technology adoption decision.
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Wholesale sector

The wholesale, retail sectors and final good sectors play no major role in the model other than

separating price rigidities from the technology choice problem of entrepreneurs.

The wholesale sector is modeled as a representative firm which produces a wholesale good with

CES technology

Y w
t =

(∫ 1

0
Y

σ−1
σ

jt dj

) σ
σ−1

, σ ≥ 0, (15)

where Yjt is the quantity of inputs it purchases from the monopolistic entrepreneurs. The wholesale

sector is perfectly competitive, giving rise to the demand schedule, Yjt = (Pjt/P
w
t )−σ Y w

t , where

Pwt =
(∫ 1

0 P
1−σ
jt dj

) 1
1−σ

is the price of the wholesale good and Pjt the price of each differentiated

entrepreneur good.

Retail sector

The retail sector is composed of a unit continuum of monopolistic producers who buy the wholesale

good at Pwt and costlessly differentiate it using a one-to-one technology. Retail sector firms are the

only ones to face price rigidities. We assume that they face Calvo-style frictions: firms can only

reset their price with probability 1− χ, leading to a standard Phillips curve.

Final good sector

The final good sector, similar to the wholesale sector, is modeled as a representative firm that oper-

ates under perfect competition and produces the final good, used for consumption and investment,

using inputs from the retail sector. It uses the CES technology,

Yt =

(∫ 1

0

(
Y r
jt

)σ−1
σ dj

) σ
σ−1

,

where Y r
jt is the quantity purchased from each retail firm and σ is the same elasticity of substitution

as in (15).

3.4 Monetary Authority

To close the model, we need to specify the policy followed by the monetary authority. As is common

in the literature, we assume that the central bank follows a Taylor rule,

1 + rt
1 + r

=

(
1 + πt
1 + π

)φπ
(
Yt

Y

)φy

, (16)

where r, π and Y correspond to the values of, respectively, the nominal interest rate, inflation and

output at the steady state around which we linearize the economy, which we define in the next
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section.

3.5 Information

The information structure for entrepreneurs mimics the one in the simple model of Section 2. The

true technology parameter θ is drawn once-and-for-all at date 0. The ex-ante probability that

θ = θH is denoted by p0. Agents in the economy cannot observe θ directly but receive various

private and public signals about it. After maturation, we assume that θ is revealed to everyone,

so the economy operates under full information afterwards. Other than the true realization of θ,

there is no uncertainty in the economy. In particular, the productivity of the old technology, Ao,

is known and there is common knowledge about the distributions of the various shocks.

Private information

We assume that entrepreneurs receive a private signal sj about θ at date 0 when the new technology

appears. Replicating the same information structure as Section 2, entrepreneurs draw their signals

from the CDF F sθ+ξ where ξ ∼ F ξ captures common noise and the family {F sx}x∈I satisfies the

same conditions as before, including the MLRP property.

Public information

In addition to observing their private signals, entrepreneurs and all other agents in the economy

(household, central bank, retailers, etc.) collect public information over time. As in the simplified

model, social learning takes place through the observation of market activity. In particular, we

assume that agents observe the measure of entrepreneurs that adopt the new technology:

mt =

∫ 1

0
ijtdj =

∫ 1−µ

0
ijtdj

︸ ︷︷ ︸

+(1− µ) εt
︸ ︷︷ ︸

,

rational entrepreneurs noise entrepreneurs

with εt ∼ iid CDF F ε. (17)

The measure of the new-technology adopters mt in (17) is almost identical to the measure of

investors in (7) with the exception that we now take a stand on the origin of the noise by assuming

that it arises from a fraction µ of noise entrepreneurs.7 Apart from that point, the informational

content of mt is identical to the earlier model up to some rescaling.

7In this general equation model, mt is a real quantity that enters many equations (resource constraints, market
clearing equations, etc.). For simplicity and to make sure that agents learn the same from observing prices and
aggregate quantities as from the direct observation of mt, we choose to interpret εt as “real” noise coming from
the actions of noise entrepreneurs that contaminates the true quantity of technology adopters rather than pure
informational noise.
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Because the productivity of the new technology is identical to Ao until maturation, there is no

other source of information in the economy. In equilibrium, prices and aggregate quantities will

solely be functions of mt and of public information up to time t. As a result, prices and quantities

provide no other information than already contained in mt.

Beliefs

As in the simple model, we denote by It = {mt−1, . . . ,m0} the public information available to

non-entrepreneur agents (households, monetary authority, retailers and outside observers). Public

beliefs are captured by the joint distribution

πt

(

θ̃, ξ̃
)

= Pr
(

θ = θ̃, ξ ∈
[

ξ̃, ξ̃ + dξ̃
]

| It
)

.

Finally, we denote by Ijt = It ∪ {sj} the information set of entrepreneur j and her beliefs by the

joint distribution πjt

(

θ̃, ξ̃
)

= Pr
(

θ = θ̃, ξ ∈
[

ξ̃, ξ̃ + dξ̃
]

| Ijt
)

.

3.6 Timing

Before date 0, the economy is in a deterministic, no-inflation steady state using the old technology.

At date 0, the new technology fundamental θ, the common noise component ξ and the private

signals sj are drawn once-and-for-all. For all date t ≥ 0,

1. Entrepreneurs choose whether to adopt the new technology or not based on their individual

beliefs πjt,

2. The measure of technology adopters mt is realized,

3. The new technology matures with probability λ,

4. Simultaneously:

(a) All agents observe mt and update their information,

(b) Production takes place,

(c) The household chooses consumption, investment and labor supply,

(d) The monetary authority sets the policy rate,

(e) Markets clear.

3.7 Investment Decision

The technology adoption decision is more complicated than in the simple model because of the

presence of general equilibrium effects. When choosing whether to use the new technology, agents

have to forecast the profits from either technology. Profits in equilibrium depend not only on

productivity but also on the level of demand from wholesalers Y w
t , prices and the real marginal
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costs mcit =
1
Ajt

(
zit
α

)α (
wt

1−α

)1−α
from using each technology i = o, n:

Πit =
(
Pjt − Ptmc

i
t

)
Yjt =

1

σ

(
σ

σ − 1

)−σ

P 1−σ
t (Pwt )σ

(
mcit

)1−σ
Y w
t .

Solving the model by linearizing the equations of the DSGE model, entrepreneur j ultimately

chooses to invest if and only if

E
[

Ânt − αẑnt | Ijt
]

≥ E
[

Âo
︸︷︷︸

=0

− αẑot | Ijt
]

, (18)

where the hatted variables are log-deviations from a steady state that we define in the next section

and zit , i = n, o is, as before, the rental rates on the capital bundles (14). As equation (18)

demonstrates, entrepreneurs not only have to forecast the technology Ant but also factor prices, as

they are now competing for the same inputs. This introduces a novel dimension that may break

down the monotonicity of the investment decision with respect to private signals and, hence, will

require special attention in the resolution method.

3.8 Belief Updating

The information structure in this general model is essentially the same as in the simple model

and we obtain the same simplification that allows us to split the static private part of beliefs from

their dynamic, time-varying public part. As a consequence, the technology decision ijt is a simple

function of the aggregate state variables of the economy Ωt =
(
KIT
t ,KT

t , I
IT
t , ITt

)
, public beliefs πt

and the private signals sj. The measure of new technology adopters is given by

mt = (1− µ)me (Ωt, πt, θ, ξ) + µεt (19)

with me (Ωt, πt, θ, ξ) =

∫

1I (ij (Ωt, πt; sj) = 1) f sθ+ξ (sj) dsj. (20)

In turn, the belief updating equation (10) needs to be amended in the following way

πt+1

(

θ̃, ξ̃
)

=

πt

(

θ̃, ξ̃
)

f ε
(

1
µ

(

mt − (1− µ)me
(

Ωt, πt, θ̃, ξ̃
)))

∫
πt (θ, ξ) f ε

(

1
µ
(mt − (1− µ)me (Ωt, πt, θ, ξ))

)

d (θ, ξ)

. (21)

4 Quantitative Exercise

We turn to the quantitative evaluation of our general macroeconomic model. After a brief discussion

of our resolution method, we calibrate the model to a specific episode in US history and examine

the ability of the model to endogenously generate a pattern of macroeconomic expansion followed
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by a contraction. We finally explore some of the model’s implications for the conduct of monetary

policy.

4.1 Resolution Method

Our model can only be solved numerically. We follow a strategy, common in the information

friction literature and linearize the equations of the model that are unrelated to the updating of

beliefs (Woodford, 2003; Angeletos and La’O, 2013). The main benefit of this approach is greater

tractability, allowing us to focus on the nonlinearities implied by the learning model while putting

aside the (usually weak) nonlinearities of the DSGE model. We carry out the linearization around

the non-stochastic zero inflation steady state that preceded period 0—before the new technology

is introduced.

Granted the benefits of the linearization approach, one difficulty remains in the need to keep

track of the potentially infinite-dimensional public belief πt (θ, ξ). We use a simplification proposed

by Kozlowski et al. (2019) which exploits the fact that, due of the Law of Iterated Expectations,

beliefs follow a martingale, that is, Et

[

πt+1

(

θ̃, ξ̃
)

| It
]

= πt

(

θ̃, ξ̃
)

. The martingale property

implies that any equilibrium condition of the form Et [f (xt, xt+1, πt, πt+1)] = 0, where f is a

nonlinear function and xt a vector of model variables can be approximated to a first-order as

E [f (xt, xt+1, πt, πt+1) | It] ≃ E [f (xt, xt+1, πt, πt) | It] .

This implies that the model can be solved in each period as if current beliefs were constant going

forward. As a consequence, we solve the model every period using a standard linear solver, compute

the adoption thresholdŝ and the evolution of beliefs in a nonlinear way, then repeat in the next

period under the new beliefs.

4.2 Calibration (Preliminary)

As we argued before, our model offers a theory of infrequent endogenous booms-and-busts. For that

reason, we do not expect our theory to explain general business cycle patterns in the absence of

other shocks, but rather to provide a narrative for certain episodes. We thus focus our calibration

exercise on a particular episode in recent US history that best fits the description of a technology-

driven boom and bust cycle: the late 1990’s Dot-Com bubble. We map the new technology in our

model to the introduction of IT technologies in the 1990s and we focus more specifically on the late

part of the cycle which covers the period that preceded the stock market collapse in the NASDAQ

composite index starting from a trough in 1998Q4 to the crash in 2001Q1.

The model is solved at the quarterly frequency. Table 1 lists a first set of standard parame-

ters that we take from the literature. Labor intensity α is set to target a standard labor share

of 36%. The discount factor β is set to match an annual real interest rate of about 4%. The
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Parameter Value Target

α 0.36 Labor share

β 0.99 4% annual interest rate

γ 1 risk aversion (log)

ψ 2 Frisch elasticity of labor supply (Chetty et al., 2011)

θp 0.75 1 year price duration

σ 10 Markups of about 11%

φy 0.125 Clarida et al. (2000)

φπ 1.5 Clarida et al. (2000)

κ 9.11 Schmitt-Grohé and Uribe (2012)

ζ 1.71 Elasticity between types of capital (Boddy and Gort, 1971)

Table 1: Standard parameters

household’s preference over consumption is logarithmic and the Frisch elasticity is set to 2, within

the range of standard macro-level estimates (Chetty et al., 2011). The Calvo price-setting param-

eter θp is set to yield an average price duration of 1 year. The elasticity of substitution between

varieties σ is set to 10 to match an average markup of 11%. The Taylor rule parameters are

within the estimates of Clarida et al. (2000). The capital adjustment cost parameter is estimated

in Schmitt-Grohé and Uribe (2012). Finally, we pick the elasticity ζ between the different types of

capital within the firm from early estimates by Boddy and Gort (1971).

Table 2 below lists the more important parameters that attempt to match features of the Dot-

Com Bubble. We set the IT-capital shares ωi, i = o, n, to match an IT investment share in total

investment of 3.36% before the introduction of the new technology in 1995 and 3.56% in 2005

(OECD Factbook, 2008). The probability of maturation for new technologies λ is set to 1/10 to

match an average waiting time of 10 quarters, corresponding to the period 1998Q4-2001Q1. We

now turn to the technology parameters. Ao is normalized to 1. We use the Survey of Professional

Forecaster (SPF) mean real GDP growth forecast over the current quarter. Under the assumption

that factors are fixed in the short run, this identifies changes in the productivity parameter θ. The

highest forecast for growth was 4.19% in 2000Q2 in annualized terms. Correcting for a mean growth

trend in GDP of 2.4% over 1991-1998, this yields θH = 1.05. Similarly, targeting the lowest growth

forecast of 0.80% in 2001Q1, we obtain an estimate θL = 0.96. The distribution of private signals

is assumed to be Gaussian, centered on θ+ ξ with standard deviation σs. To set the dispersion σs,

we target the average dispersion of growth forecasts in the SPF over 1998-2001. Finally, we must

assume a distribution for the fraction of noise traders that adopt the new technology with support

over [0, 1]. We choose a beta distribution of parameters (2,2).8

8The distribution Beta(1, 1) is uniform and produces a flat learning response. As a result, we pick a Beta(2, 2)
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Parameter Value Target

ωo 0.34 IT investment in GDP pre-1995 (2.86%)

ωn 0.36 IT investment post-2005 (3.56%)

λ 1/10 Duration of NASDAQ boom-bust 1998Q4-2001Q1

θh 1.05 SPF highest growth forecast over 1998-2001

θl 0.96 SPF lowest growth forecast over 1998-2001

sj N (θ + ξ, 0.137) SPF avg. dispersion in forecasts over 1998-2001

ε Beta(2, 2) Non-uniform distribution over [0, 1]

µ 5% Fraction of noise traders

ξ N
(

0, σ2
ξ

)

See text

Table 2: Dot-Com episode related parameters

Two parameters remain to calibrate for which there does not exist widely accepted estimates

or natural targets. The first one is the fraction of noise entrepreneurs µ which controls the infor-

mativeness of the social learning channel. While some estimates exist in the literature regarding

the informativeness of markets (see for instance David et al., 2016), these estimates do not cover

social learning about new technologies. We conduct sensitivity analysis on this parameter but

start with a benchmark value of µ = 5%. Finally, we assume that the common noise shock ξ

is normally distributed with standard deviation σξ. Without long time series on the frequencies

and magnitudes of boom-bust episodes, we cannot reliably identify the parameter σξ. Instead, we

explore different values of σξ and compute the corresponding frequency of boom-bust cycles. Our

numerical experiments suggest a nonmonotonic relationship: for low values of σξ, the probability

that large enough shocks ξ > ξ produce boom-bust cycles is low; for high values of σξ, agents

put sufficient probability on high realization of ξ that boom-bust cycles are rarely triggered. The

figures we report are computed with some intermediate value of σξ that maximizes the frequency

of boom-bust cycles.

4.3 Boom-and-Bust Cycles

Figure 8 presents the impulse responses of the economy to a false-positive shock with θ = θL but ξ

large enough to trigger a boom-and-bust cycle. The measure of high-technology adopters mt and

beliefs evolve in a way that mimics the type of boom-bust cycle highlighted in Figure 4. In this

example, the shock ξ is large enough to send the economy very quickly in the region with a large m.

Because a false-positive shock of that size is initially deemed unlikely, beliefs about the high state

jump on impact pushing the economy in the slow-learning region. As time unfolds, agents observe

a high rate of technology adoption that is more or less consistent with the high state, but more

distribution with full support over [0, 1] and mode at 0.5.
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so with the false positive one. As a result, the high-state posterior probability pt slowly declines

and the false-positive probability rises over time until a crash occurs around period 6, for reasons

identical to those we described in the simple learning model.
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Notes: The impulse responses are reported in log-deviations from the initial non-stochastic steady state. Variable ĥt

captures hours and v̂n denotes the value of a firm operating the high-technology.

Figure 8: Impulse response to a common noise shock ξ = 0.96 (θH − θL)

More specific to the current exercise is how this pattern of technology adoption and the evolution

of beliefs translate to other macroeconomic variables. As agents become more optimistic after

observing people rushing to adopt the new technology, the household anticipates higher productivity

growth in the future and higher income, resulting in upward pressure on consumption due to a

positive income effect. With expectations of higher productivity from the new technology, the

demand for IT capital rises and the household responds by increasing IT investment. The new

technology being less intensive in the other form of capital, the demand for traditional capital falls

and so does traditional investment. The rise in consumption and investment in IT capital, despite

being accompanied by a moderate decline in traditional investment, contribute to an overall rise

in aggregate demand. This is where price rigidities play an important role. In a real business

cycle model, the rise in aggregate demand should be offset by a sharp rise in the real interest rate.

With sticky prices, the interest rate response is muted if the monetary authority is sufficiently

accommodative. As a result, aggregate demand keeps rising. Firms, satisfying demand, respond

by increasing output and employment, reversing the negative pressure on labor supply that arises

because of the income effect. Consequently, wages increase, but inflation remains low because firms
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anticipate greater productivity and lower marginal costs in the future. As evidenced by variable

v̂n, which captures the value of new-technology firms, IT companies experience a stock market

boom along the expansion. These dynamic effects are reversed when the crash occurs and agents

realize that the new technology is actually of low quality. While agents mostly abandon the new

technology, a recession occurs because agents wake up after having invested too much in IT capital

and not enough in the traditional capital. This creates misallocation and a negative income effect

which puts downward pressure on aggregate demand, despite a recovery in traditional investment.

Several comments are in order at this point. In line with our objective, the model is able

to generate comovement across macroeconomic aggregates (e.g., c, i, h and y), thus providing a

theoretical narrative for this type of boom and bust cycles. Less appealing is, however, the fact

that the current calibration is unable to generate a slow boom/sudden crash pattern. Given our

current parametrization, the economy swings very rapidly between extreme regions where m is

either close to 0 or 1. Second, while the model is able to generate a recession with a significant

peak-to-trough gap (about 1.5%), it remains smaller than the one in the data (about 3%). This

result seems, however, a feature of belief-driven cycles that our model shares with the news/noise-

driven business cycle literature. We also compute the frequency at which boom-and-bust cycle arise

in our model. While the existing consensus is that such cycles are rare in models with rational

agents (for instance, Avery and Zemsky (1998) in a traditional model of herding must push their

probability to 10−6), we find that boom-bust cycles can arise in our framework at a frequency as

high as 16% when varying σξ. We view this number as quite encouraging for the ability of rational

herding models in explaining the data.

5 Conclusion

This paper explores whether rational herding can generate endogenous business cycle fluctuations.

We propose a novel theory of herding which captures many essential features of more traditional

models (Banerjee, 1992; Bikhchandani et al., 1992; Chamley, 2004), while being tractable enough

to be embedded into a general equilibrium business cycle framework.

We show that the model is able to endogenously generate a boom-and-bust pattern out of a

single belief shock without the need for a particular sequence of shocks. Our model has predictions

on the frequency, the timing and the conditions under which such cycles emerge or burst. It can thus

be used to analyze the role of stabilization policy, including investment-specific taxes or monetary

policy.

We have restricted our attention to technology-driven boom-and-bust cycles for the sake of

precision, butthe implications of the theory go beyond this context and we believe our herding model

can be used in other environments to analyze herding behavior following any sort of innovation,

be it financial innovations or innovations to the demand for certain types of goods (new products,
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housing).

Several extensions are worth investigating. First, our current macroeconomic model ignores the

role of debt. An interesting extension would be to study how the rising pattern of optimism during

the growth stage of the cycle could relax financial constraints and lead to an expansion in credit,

triggering a wave of bankruptcies at the time of the crash. Another natural extension would be to

consider a financial market application of our herding model and examine, in particular, the role

of speculation. We leave these ideas to future research.
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A Appendix of Section 2

A.1 Equations for the three-state model

This section provides the specific model equations that characterize beliefs in the three-state model.

Equation (3) that builds private beliefs from the public ones becomes

pjt = pj (pt, qt, sj) =
ptf

s
θH

(sj)

ptf sθH (sj) + qtf sθL+∆ (sj) + (1− pt − qt) f sθL (sj)
, (22)

qjt = qj (pt, qt, sj) =
qtf

s
θL+∆ (sj)

ptf sθH (sj) + qtf sθL+∆ (sj) + (1− pt − qt) f sθL (sj)
.

Equation (9) that defines the interim beliefs after observing Rt is simply

pt|Rt
=

ptf
u (Rt − θH)

ptfu (Rt − θH) + (1− pt) fu (Rt − θL)
,

qt|Rt
=

qtf
u (Rt − θL)

ptfu (Rt − θH) + (1− pt) fu (Rt − θL)
.

Finally, in the three state model, the optimal investment strategy characterized by Equation (10)
that defines the law of motion of beliefs after observing mt becomes

pt+1 =
pt|Rt

fε
(

mt − F
s

θH
(ŝ (pt, qt))

)

pt|Rt
fε

(

mt − F
s
θH

(ŝ (pt, qt))
)

+ qt|Rt
fε

(

mt − F
s
θL+∆ (ŝ (pt, qt))

)

+
(

1− pt|Rt
− qt|Rt

)

fε
(

mt − F
s
θL

(ŝ (pt, qt))
) ,

qt+1 =
qt|Rt

fε
(

mt −me

(

pt|Rt
, qt|Rt

, θL,∆
))

pt|Rt
fε

(

mt − F
s
θH

(ŝ (pt, qt))
)

+ qt|Rt
fε

(

mt − F
s
θL+∆ (ŝ (pt, qt))

)

+
(

1− pt|Rt
− qt|Rt

)

fε
(

mt − F
s
θL

(ŝ (pt, qt))
) .

A.2 Propositions

Proposition 1. There exists a unique equilibrium.

Proof. The threshold p̂ is uniquely determined by (6). Fix the fundamental (θ, ξ) and the realization of the shocks

{u0, ε0, u1, ε1, . . . }. Given public beliefs πt, (3) and (5) yield a unique distribution of private beliefs {pjt}j∈[0,1].

Given these, there is a unique me
t , derived from (8) and, therefore a unique mt from (7). As a result, updating beliefs

through (9) and (10) yield unique πt|R and πt+1. We have shown that the updating of public beliefs yields a unique

πt+1 from any πt. Starting from arbitrary public beliefs π0, there is therefore a unique equilibrium path {π0, π1, . . . },

and all other quantities can be uniquely determined from it.

Lemma 1. In the three-state model, for θL < θL +∆ < θH and {F s
x} satisfying the MLRP condition, the optimal

investment strategy in characterized by a cutoff rule in the private signal ŝ (pt, qt), decreasing in pt. That is, an agent

invests if and only if sj ≥ ŝ (pt, qt). The expected measure of investing agents is given by

me (pt, qt, θ, ξ) = F
s

θ+ξ (ŝ (pt, qt)) .

Proof. The proof is straightforward. Under the above conditions, rewrite the individual probability of the high-
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technology state as

pj (pt, qt, sj) =
pt

pt + qt
fs
θL+∆(sj)
fs
θH

(sj)
+ (1− pt − qt)

fs
θL

(sj)
fs
θH

(sj)

.

Under the assumption of MLRP and θL < θL + ∆ < θH , pj is clearly increasing in sj . Hence, for all (pt, qt), there

exists a cutoff ŝ (pt, qt) ∈ R∪ {−∞,∞} such that sj ≥ ŝ (pt, qt) ⇔ pj (pt, qt, sj) ≥ p̂. Also, because pj is increasing in

pt, the implicit function theorem ensures that ŝ (pt, qt) is decreasing in pt. The measure of investing agents is thus

me (pt, qt, θ, ξ) =

∫

1I (pj (pt, qt, sj) ≥ p̂) fs
θ+ξ (sj) dsj = F

s

θ+ξ (ŝ (pt, qt)) .

Proposition 2. In the Gaussian case, i.e., F ξ ∼ N
(

0, σ2
ξ

)

, F s|θ, ξ ∼ N
(

θ + ξ, σ2
s

)

, F ε ∼ N
(

0, σ2
ε

)

, Fu ∼ N
(

0, σ2
u

)

,

for θ and ξ independent and signal Rt sufficiently uninformative (σu low), there exists a large enough ξ such that all

shocks ξ ≥ ξ generate a boom-and-bust cycle in the impulse response of beliefs pt to a false-positive shock (θL, ξ).

Proof. Our strategy is to show that there exists a sufficiently large ξ, such that for all shock ξ ≥ ξ the public beliefs

about the high state in date 1, p1, increases after observing m0. Since beliefs must converge to the truth in the

long-run, due to the strictly positive flow of information, and the law of large numbers, this guarantees the existence

of a boom-and-bust cycle. We start under the assumption that Rt is totally uninformative, σu = ∞.

First, we establish that the optimal strategy in the Gaussian case follows a cutoff strategy in ŝ. The probability

that individual j puts on the high state is given by

pj (p0, sj) =

∫

π0 (θH , ξ) f
s
θH+ξ (sj) dξ

∫

π0 (θH , ξ) fs
θH+ξ (sj) dξ +

∫

π0 (θL, ξ) fs
θL+ξ (sj) dξ

.

Since ξ is independent from θ, π0 (θH , ξ) = p0f
ξ (ξ) and π0 (θL, ξ) = (1− p0) f

ξ (ξ). Notice, then, that
∫

fξ (ξ) fs
θ+ξ (sj) dξ

is the pdf of sj given θ, which is a normal, sj |θ ∼ N
(

θ, σ2
ξ + σ2

s

)

. Denote φ the pdf of a unit normal, we have:

pj (p0, sj) =
1

1 +
(1−p0)

∫

fξ(ξ)fs
θL+ξ(sj)dξ

p0
∫

fξ(ξ)fs
θH+ξ(sj)dξ

=
1

1 + 1−p0
p0

φ

(

sj−θL
√

σ2
ξ
+σ2

s

)

/φ

(

sj−θH
√

σ2
ξ
+σ2

s

) .

Since the Gaussian family satisfies the MLRP property, pj is increasing in sj . Hence, the optimal investment strategy

at date 0 takes a cutoff form ŝ0.

Under the assumption that Rt is uninformative, the public belief about the high state at the beginning of period

1, p1, is given by

p1 =

∫

π1 (θH , ξ) dξ =

∫

π0 (θH , ξ) f
ε (m0 −me (π0, θH , ξ)) dξ

∫

π0 (θH , ξ) fε (m0 −me (π0, θH , ξ)) dξ +
∫

π0 (θL, ξ) fε (m0 −me (π0, θL, ξ)) dξ
.

Using the independence property between θ and ξ and the cutoff property, the above formula can be rewritten as

p1 =
1

1 + 1−p0
p0

∫

fξ(ξ)fε
(

m0−F
s
θL+ξ(ŝ0)

)

dξ

∫

fξ(ξ)fε
(

m0−F
s
θH+ξ(ŝ0)

)

dξ

.

Denoting ξ0 the true shock, the impulse response in mt yields m0 = F
s

θL+ξ0
(ŝ0), which goes to 1 as ξ0 → ∞.

Because the MLRP property implies first-order stochastic dominance, we have F
s

θL+ξ (ŝ0) < F
s

θH+ξ (ŝ0). Since f
ε (ε)

is decreasing for ε ≥ 0, we have

fε
(

m0 − F
s

θL+ξ (ŝ0)
)

< fε
(

m0 − F
s

θH+ξ (ŝ0)
)
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for all ξ ≤ θL − θH + ξ0. Decompose the difference between the denominator and numerator can be written

∫

fξ (ξ) fε
(

m0 − F
s

θH+ξ (ŝ0)
)

dξ −

∫

fξ (ξ) fε
(

m0 − F
s

θL+ξ (ŝ0)
)

dξ

−→
ξ0→∞

∫ ∞

−∞

fξ (ξ)
[

fε
(

1− F
s

θH+ξ (ŝ0)
)

− fε
(

1− F
s

θL+ξ (ŝ0)
)]

dξ > 0

The difference converges to a strictly positive term. Thus, there exists ξ such that for all ξ0 > ξ

∫

fξ (ξ) fε
(

F
s

θL+ξ0
(ŝ0)− F

s

θL+ξ (ŝ0)
)

dξ <

∫

fξ (ξ) fε
(

F
s

θL+ξ0
(ŝ0)− F

s

θH+ξ (ŝ0)
)

dξ

and p1 > p0. The shock is large enough for agents to attribute it mostly to the high state, initiating the growth stage

of the cycle. By continuity of the belief updating equations in σu. There must also exists a sufficiently large σu (Rt

sufficiently uninformative) for which p1 > p0 after ξ0 ≥ ξ.

Proposition 3. The efficient allocation can be implemented as an equilibrium by an investment tax

τ∗ =
(

Eθ,ξ

[

fp

θ+ξ (p̂) | I
])−1

β
∂Eθ,ξ [V (I′) | I]

∂p̂
, ((13))

and a lump-sum transfer to all investors.

Proof. We consider a tax τ that makes the effective cost of investing c + τ . Under that tax, (6) shows that the

marginal investor p̂ is such that p̂θH + (1− p̂) θL = c+ τ . Combining with (12) and reorganizing yields (13).

A.3 Figures

(a) Measure of investing agents
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(b) Evolution of public beliefs
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Notes: The simulation was performed with parameters: θH = 1, θL = 0.5, ∆ = 0.4, c = 0.79. The priors are set to p0 = 0.25

and q0 = 0.05. The distributions of all signals are Gaussian with standard deviations σs = 0.4, σε = 0.2, σu = 2.5. The shaded

area corresponds to the informational cascade period, loosely defined as periods when mt ≥ 85% in which learning is markedly

slower, given our calibration.

Figure 9: Impulse response in the case of a true positive
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(a) Measure of investing agents
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(b) Evolution of public beliefs
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Notes: The simulation was performed with parameters: θH = 1, θL = 0.5, ∆ = 0.4, c = 0.79. The priors are set to p0 = 0.25

and q0 = 0.05. The distributions of all signals are Gaussian with standard deviations σs = 0.4, σε = 0.2, σu = 2.5. The shaded

area corresponds to the informational cascade period, loosely defined as periods when mt ≥ 85% in which learning is markedly

slower, given our calibration.

Figure 10: Impulse response in the case of a true negative
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