\def\Er{{\mathrm{E}}}
\def\En{{\mathbb{En}}}
\def\cov{{\mathrm{Cov}}}
\def\var{{\mathrm{Var}}}
\def\R{{\mathbb{R}}}
\newcommand\norm[1]{\left\lVert#1\right\rVert}
\def\rank{{\mathrm{rank}}}
\newcommand{\inpr}{ \overset{p^*_{\scriptscriptstyle n}}{\longrightarrow}}
\def\inprob{{\,{\buildrel p \over \rightarrow}\,}}
\def\indist{\,{\buildrel d \over \rightarrow}\,}
\DeclareMathOperator*{\plim}{plim}
Convergence in Distribution
Definition
Random vectors X_1, X_2, ...converge in distribution to the random vector X if for all f \in \underbrace{\mathcal{C}_b} (continuous and bounded)
\Er[ f(X_n) ] \to \Er[f(X)]
denoted by X_n \indist X
Relation to Convergence in Probability
Theorem 1.4
If X_n \indist X, then X_n = O_p(1)
If c is a constant, then X_n \inprob c iff X_n \indist c
If Y_n \inprob c and X_n \indist X, then (Y_n, X_n) \indist (c, X)
If X_n \inprob X, then X_n \indist X
Slutsky’s Lemma
Theorem 1.5 (Generalized Slutsky’s Lemma)
If Y_n \inprob c, X_n \indist X, and g is continuous, then
g(Y_n, X_n) \indist g(c,X)
Implies:
Y_n + X_n \indist c + X
Y_n X_n \indist c X
X_n/Y_n \indist X/c
Central Limit Theorem
Levy’s Continuity Theorem
Lemma 2.1 (Levy’s Continuity Theorem)
X_n \indist X iff \Er[e^{i t'X_n} ] \to \Er[e^{i t' X} ] for all t \in \R^d
┌ Warning: `Plot(; kw...)` is deprecated. Use `plot(; kw...)` instead.
│ caller = top-level scope at indistribution.qmd:243
└ @ Core ~/626/site/asymptotics/indistribution.qmd:243
Cramér-Wold Device
Lemma 2.2
For X_n, X \in \R^d, X_n \indist X iff t' X_n \indist t' X for all t \in \R^d
Multivariate Central Limit Theorem
Theorem 2.4
Suppose X_1, ..., X_n are i.i.d. with \Er[X_1] = \mu \in \R^d and \var(X_1) = \Sigma > 0, then
\frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i - \mu) \indist N(0,\Sigma)
Delta Method
Theorem 3.1 (Delta Method)
Suppose that \hat{\theta} is a sequence of estimators of \theta_0 \in \R^d, and
\sqrt{n}(\hat{\theta} - \theta_0) \indist S
Also, assume that h: \R^d \to \R^k is differentiable at \theta_0, then
\sqrt{n} \left( h(\hat{\theta}) - h(\theta_0) \right) \indist Dh(\theta_0) S
Delta Method: Example
What is the asymptotic distribution of
\hat{\sigma} = \sqrt{\frac{1}{n}
\sum_{i=1}^n \left(x_i - \frac{1}{n} \sum_{j=1}^n x_j \right)^2}?
Continuous Mapping Theorem
Continuous Mapping Theorem
Let X_n \indist X and g be continuous on a set C with P(X \in C) = 1, then
g(X_n) \indist g(X)
Continuous Mapping Theorem: Example
In linear regression,
y_i = x_i'\beta_0 + \epsilon_i
What is the asymptotic distribution of
M(\beta) = \left\Vert \frac{1}{\sqrt{n}} \sum_{i=1} x_i (y_i - x_i'\beta) \right\Vert^2
when \beta=\beta_0?
Assume that for each n, X_{n,1}, ..., X_{n,k(n)} are independent with \Er[X_{nj}] = 0, and \frac{1}{k(n)} \sum_{j=1}^{k(n)} \Er[X_{nj}^2] = 1 and for any \epsilon>0,
\lim_{n \to \infty} \frac{1}{k(n)} \sum_{j=1}^{k(n)} \Er\left[ X_{nj}^2 1\{|X_{nj}|>\epsilon \sqrt{k(n)} \right] = 0
Then,
\frac{1}{\sqrt{k(n)}} \sum_{j=1}^{k(n)} X_{n,j} \indist N(0,1)
Characterizing Convergence in Distribution
Characterizing Convergence in Distribution
Lemma 1.2
X_n \indist X iff for any open G \subset \R^d,
\liminf P(X_n \in G) \geq P(X \in G)
This and additional characterizations of convergence in distribution are called the Portmanteau Theorem
Characterizing Convergence in Distribution
Theorem 1.1
If X_n \indist X if and only if P(X_n \leq t) \to P(X \leq t) for all t where P(X \leq t) is continuous
Theorem 1.2
If X_n \indist X and X is continuous, then
\sup_{t \in \R^d} | P(X_n \leq t) - P(X \leq t) | \to 0
Non-asymptotic
Weak Berry-Esseen Theorem
Weak Berry-Esseen Theorem
Let X_i be i.i.d with \Er[X]=0, \Er[X^2]=1 and \Er[|X|^3] finite. Let \varphi be smooth with its first three derivatives uniformly bounded, and let G \sim N(0,1). Then
\left\vert \Er\left[ \varphi\left( \frac{1}{\sqrt{n}} \sum_{i=1}^n X_i \right) \right] -
\Er\left[\varphi(G)\right]
\right\vert \leq C \frac{\Er[|X|^3]}{\sqrt{n}} \sup_{x \in \R} |\varphi'''(x)|
1
Berry-Esseen Theorem
Berry-Esseen Theorem
If X_i are i.i.d. with \Er[X] = 0 and \var(X)=1, then
\sup_{z \in \R} \left\vert
P\left(\left[\frac{1}{\sqrt{n}} \sum_{i=1}^n X_i\right] \leq z \right) - \Phi(z) \right\vert \leq 0.5 \Er[|X|^3]/\sqrt{n}
where \Phi is the normal CDF.
Multivariate Berry-Esseen Theorem
If X_i \in \R^d are i.i.d. with \Er[X] = 0 and \var(X)=I_d, then
\sup_{A \subset \R^d, \text{convex}} \left\vert
P\left(\frac{1}{\sqrt{n}} \sum_{i=1}^n X_i \in A \right) - P(N(0,I_d) \in A) \right\vert \leq
(42 d^{1/4} + 16) \Er[\Vert X \Vert ^3]/\sqrt{n}
1
Simulated Illustration of Berry-Esseen CLT
plotting code
usingPlots, Distributionsfunctiondgp(n, xhi=2) p =1/(1+xhi^2) xlo =-p*xhi/(1-p) hi =rand(n) .< p x =ifelse.(hi, xhi, xlo)endfunctionEx3(xhi) p =1/(1+xhi^2) xlo =-p*xhi/(1-p) p*xhi^3+ (1-p)*-xlo^3endfunctionplotcdfwithbounds(dgp, e3, n=[10,100,1000], S=9999) cmap =palette(:tab10) x =range(-2.5, 2.5, length=200) cdfx=x->cdf(Normal(), x) fig=Plots.plot(x, cdfx, label="Normal", color="black", linestyle=:dash)for (i,ni) inenumerate(n) truedist = [mean(dgp(ni))*sqrt(ni) for _ in1:S] ecdf = x->mean(truedist .<= x) Plots.plot!(x, ecdf, label="n=$ni", color=cmap[i]) Plots.plot!(x, cdfx.(x), ribbon =0.5*e3/√ni, fillalpha=0.2, label="", color=cmap[i])endxlims!(-2.5,2.5)ylims!(0,1)title!("Distribution of Scaled Sample Mean")return(fig)endxhi =2.5plotcdfwithbounds(n->dgp(n,xhi), Ex3(xhi))
Simulated Illustration of Berry-Esseen CLT : Slack Bounds
References
Döbler, Christian. 2022. “A Short Proof of Lévy’s Continuity Theorem Without Using Tightness.”Statistics & Probability Letters 185: 109438. https://doi.org/https://doi.org/10.1016/j.spl.2022.109438.