2024-10-21
\[ \def\Er{{\mathrm{E}}} \def\En{{\mathbb{En}}} \def\cov{{\mathrm{Cov}}} \def\var{{\mathrm{Var}}} \def\R{{\mathbb{R}}} \newcommand\norm[1]{\left\lVert#1\right\rVert} \def\rank{{\mathrm{rank}}} \newcommand{\inpr}{ \overset{p^*_{\scriptscriptstyle n}}{\longrightarrow}} \def\inprob{{\,{\buildrel p \over \rightarrow}\,}} \def\indist{\,{\buildrel d \over \rightarrow}\,} \DeclareMathOperator*{\plim}{plim} \]
Definition
Random vectors \(X_1, X_2, ...\) converge in probability to the random vector \(Y\) if for all \(\epsilon>0\) \[ \lim_{n \to \infty} P\left( \norm{X_n - Y} > \epsilon \right) = 0 \] denoted by \(X_n \inprob Y\) or \(\plim_{n \to \infty} X_n = Y\)
Definition
Random vectors \(X_1, X_2, ...\) converge in \(L^p\) to the random vector \(Y\) if \[ \lim_{n \to \infty} \Er\left[ \norm{X_n-Y}^p \right] \to 0 \]
Markov’s Inequality
\(P(|X|>\epsilon) \leq \frac{\Er[|X|^k]}{\epsilon^k}\) \(\forall \epsilon > 0, k > 0\)
Theorem 1.1
If \(X_n\) converges in \(L^p\) to \(Y\), then \(X_n \inprob Y\).
An estimator, \(\hat{\theta}\) is consistent if \(\hat{\theta} \inprob \theta_0\)
Implication for estimators: \[ \begin{aligned} MSE(\hat{\theta}_n) = & \Er[ \norm{\hat{\theta}_n - \theta_0}^2 ] \\ = & tr[\var(\hat{\theta}_n)] + Bias(\hat{\theta}_n)'Bias(\hat{\theta}_n) \end{aligned} \]
If \(MSE(\hat{\theta}_n) \to 0\), then \(\hat{\theta}_n \inprob \theta_0\)
If \(\lim_{n \to \infty} \Er[\hat{\theta}_n] \neq \theta_0\), then \(\plim \hat{\theta}_n \neq \theta_0\)
In \(y = X \beta_0 + u\), when does \(\hat{\beta} = (X'X)^{-1} X' y\) \(\inprob \beta_0\)?
Sufficient that \(MSE(\hat{\beta}) = tr[\var(\hat{\beta})] + Bias(\hat{\beta})'Bias(\hat{\beta}) \to 0\)
\(\var(\hat{\beta}) = \sigma^2 (X'X)^{-1}\) (treating \(X\) as non-stochastic)
\(tr((X'X)^{-1}) \leq \frac{k}{\lambda_{ min}(X'X)}\)
Theorem 2.2
If \(X_n \inprob X\), and \(f\) is continuous, then \(f(X_n) \inprob f(X)\)
Slutsky’s Lemma
If \(Y_n \inprob c\) and \(W_n \inprob d\), then
Weak Law of Large Numbers
If \(X_1, ..., X_n\) are i.i.d. and \(\Er[X^2]\) exists, then \[ \frac{1}{n} \sum X_i \inprob \Er[X] \]
Proof: use Markov’s inequality
This is the simplest to prove WLLN, but there are many variants with alternate assumptions that also imply \(\frac{1}{n} \sum X_i \inprob \Er[X]\)
In \(y = X \beta_0 + u\), when does \(\hat{\beta} \inprob \beta_0\)?
Treat \(X\) as stochastic
\(\hat{\beta} = \left(\frac{1}{n} \sum_{i=1}^n X_i X_i' \right)^{-1} \left(\frac{1}{n} \sum_{i=1}^n X_i y_i \right)\)
If WLLN applies to \(\frac{1}{n} \sum_{i=1}^n X_i X_i'\) and \(\frac{1}{n} \sum_{i=1}^n X_i y_i\) (and \(\Er[X_i X_i']^{-1}\) exists)
Sufficient for i.i.d, \(\Er[X_i u_i] = 0\), 4th moments of \(X_i\) to exist, \(\Er[u_i^2]\) to exist
Definition
Given a sequence of random variables, \(X_1, X_2, ...\) and constants \(b_1, b_2, ...\), then
Real valued \(X_1, ..., X_n\) i.i.d., with \(\Er[X] = \mu\), \(\var(X_i) = \sigma^2\)
Markov’s inequality \[ P\left( |\overbrace{\En X_i}^{\equiv \frac{1}{n} \sum_{i=1}^n X_i} - \mu | > a \right) \leq \frac{\var(\En X_i - \mu)}{a^2} \leq \frac{\sigma^2}{n a^2} \]
Let \(a = \epsilon n^{-\alpha}\), then \[ P\left( \frac{|\En X_i - \mu |}{n^{-\alpha}} > \epsilon \right) \leq \frac{\sigma^2}{n^{1 - 2\alpha}\epsilon^2} \]
\(|\En X_i - \mu | = o_p(n^{-\alpha})\) for \(\alpha \in (0, 1/2)\)
Real valued \(X_1, ..., X_n\) i.i.d., with \(\Er[X] = \mu\), \(\var(X_i) = \sigma^2\)
Markov’s inequality \[ P\left( |\overbrace{\En X_i}^{\equiv \frac{1}{n} \sum_{i=1}^n X_i} - \mu | > a \right) \leq \frac{\var(\En X_i - \mu)}{a^2} \leq \frac{\sigma^2}{n a^2} \]
Let \(a = \sigma \epsilon^{-1/2} n^{-1/2}\), \[ P\left( \frac{|\En X_i - \mu |}{n^{-1/2}} > \underbrace{\sigma \epsilon^{-1/2}}_{M_\epsilon} \right) \leq \epsilon \] so \(|\En X_i - \mu | = O_p(n^{-\alpha})\) for \(\alpha \in (0, 1/2]\)
Suppose \(\Er\left[e^{\lambda (X-\mu)}\right] \leq e^{\frac{\lambda^2 \sigma^2}{2}}\), then \[ P(X-\mu>\epsilon) \leq \inf_{\lambda \geq 0} e^{-\lambda \epsilon + \lambda^2 \sigma^2/2} = e^{-\frac{\epsilon^2}{2 \sigma^2}} \]
Suppose \(\Er\left[e^{\lambda (X_i-\mu)}\right] \leq e^{\frac{\lambda^2 \sigma^2}{2}}\) and \(X_i\) are independent, then \[ P\left(\frac{1}{n} \sum_{i=1}^n X_i-\mu >\epsilon\right) \leq e^{-\frac{\epsilon^2 n}{2 \sigma^2}} \]