2024-10-21
\[ \def\Er{{\mathrm{E}}} \def\En{{\mathbb{E}_n}} \def\cov{{\mathrm{Cov}}} \def\var{{\mathrm{Var}}} \def\R{{\mathbb{R}}} \def\arg{{\mathrm{arg}}} \newcommand\norm[1]{\left\lVert#1\right\rVert} \def\rank{{\mathrm{rank}}} \newcommand{\inpr}{ \overset{p^*_{\scriptscriptstyle n}}{\longrightarrow}} \def\inprob{{\,{\buildrel p \over \rightarrow}\,}} \def\indist{\,{\buildrel d \over \rightarrow}\,} \DeclareMathOperator*{\plim}{plim} \]
\[ \Er\left[g(Z_i,\theta_0) \right] = 0 \]
Parameter \(\theta_0 \in \R^d\)
Data \(\tilde{Z}_i \in \R^m\)
Moment function \(g: \R^m \times \R^d \to \R^k\)
Identification: \(\Er\left[g(Z_i,\theta) \right] = 0\) iff \(\theta=\theta_0\)
\[ Y_i = X_i' \beta_0 + u_i \] \[ \Er\left[Z_i(Y_i - X_i'\beta_0) \right] = 0 \]
\[ \Er\left[Z_i(Y_i - h(X_i,\beta_0)) \right] = 0 \]
\(\exists \theta_0 \in \Theta\) s.t. \(\forall \epsilon>0\), \[ \inf_{\theta: \norm{\theta-\theta_0} > \epsilon} \norm{\Er[g(Z_i,\theta)]} > \norm{\Er[g(Z_i,\theta_0)]} \]
Suppose:
\(\exists \theta_0 \in \Theta\) s.t. \(\forall \epsilon>0\), \(\inf_{\theta: \norm{\theta-\theta_0} > \epsilon} \norm{\Er[g(Z_i,\theta)]} > \norm{\Er[g(Z_i,\theta_0)]}\)
\(\sup_{\theta \in \Theta} \norm{\En[g(Z_i,\theta)] - \Er[g(Z_i,\theta)]} \inprob 0\)
\(S_n \inprob S\)
Then \(\hat{\theta} \inprob \theta_0\)
Suppose:
\(\theta_0 \in int(\Theta)\), & \(g(z,\theta)\) is twice continuously differentiable
\(\sqrt{n} \frac{\partial}{\partial \theta} \hat{Q}^{GMM}(\theta_0) \indist N(0,\Omega)\)
\(\sup_{\theta \in int(\Theta)} \norm{\frac{\partial^2}{\partial \theta \partial \theta'} \hat{Q}^{GMM}(\theta) - B(\theta)} \inprob 0\) with \(B(\cdot)\) continuous at \(\theta_0\) and \(B(\theta_0) > 0\)
Then, \[ \sqrt{n}(\hat{\theta} - \theta_0) \indist N(0, B_0^{-1} \Omega_0 B_0^{-1}) \]
Let \[ \begin{align*} M & = (\Gamma'C\Gamma)^{-1} \Gamma' C \Sigma C \Gamma (\Gamma'C\Gamma)^{-1} \\ M^* & = (\Gamma' \Sigma^{-1} \Gamma)^{-1} \end{align*} \] then \(M \geq M^*\)