2024-10-21
\def\Er{{\mathrm{E}}} \def\cov{{\mathrm{Cov}}} \def\var{{\mathrm{Var}}} \def\R{{\mathbb{R}}} \newcommand\norm[1]{\left\lVert#1\right\rVert} \def\rank{{\mathrm{rank}}}
Theorem: Gauss-Markov
If \Er[u] = 0 and \Er[uu'] = \sigma^2 I_n, then the best linear unbiased estimator (BLUE) of a'\beta = a'\hat{\beta} where \hat{\beta} = (X'X)^{-1} X'y
Definition
An L \subset V is a subspace if \forall x, y \in L, \alpha, \beta \in \R, \alpha x + \beta y \in L
Definition
Given a subspace L \subset V the orthogonal complement of L is L^\perp = \{x \in V: x' l = 0 \,\forall l \in L\}
Lemma 1.1
Let L_1 and L_2 be subspaces of V, then (\underbrace{L_1 + L_2}_{\{l_1 + l_2 \in V: l_1 \in L_2, l_2 \in L_2\}})^\perp = L_1^\perp \cap L_2^\perp and (L_1 \cap L_2)^\perp = L_1^\perp + L_2^\perp
Definition
P_L y \in L is the projection of y on L if \norm{y - P_L y } = \inf_{w \in L} \norm{y - w}
Projection Theorem
P_L y exists, is unique, and is a linear function of y
For any y_1^* \in L, y_1^* = P_L y iff y- y_1^* \perp L
Theorem 1.2
A linear map G: V \to L is the projection map onto L iff Gy = y \forall y \in L and Gy = 0 \forall y \in L^\perp
Definition
Linear G: V \to V is
idempotent if G (G y) = G y \forall y \in V
symmetric if G'y = G y \forall y \in V
Theorem 1.3
A linear map G: V \to V is a projection map onto its range, \mathcal{R}(G), iff G is idempotent and symmetric.
Theorem 1.4
Let L \subset V and L_0 \subset L be subspaces. Then P_L - P_{L_0} = P_{L \cap L_0^\perp}
Definition
For linear H: \R^s \to \R^r, the g-inverse of H is any H^{-} s.t. H H^{-} H = H
Theorem 1.5
Let X: \R^k \to \R^n be linear. The projection onto \mathcal{R}(X) is P_X = X(X'X)^- X' where (X'X)^{-} is any g-inverse of X'X
Definition
Let A: V \to V be linear. Then \lambda is an eigenvalue of A and v \neq 0 is an associated eigenvector if A v = \lambda v
Lemma 1.2
The eigenvalues of a symmetric and idempotent matrix, P are either 0 or 1. Furthmore rank of P is the sum of its eigenvalues.
Theorem 1.6
\mathrm{rank}(P_X) = \mathrm{rank}(X)
\rank(I-P_X) = n - \rank(X)
Y = \theta + u
\theta \in L \subset \R^n, L a known subspace
u \in \R^n unobserved
Theorem: Gauss-Markov
If \Er[u] = 0 and \Er[uu'] = \sigma^2 I_n, then the best linear unbiased estimator (BLUE) of a'\theta = a'\hat{\theta} where \hat{\theta} = P_L y
Corollary
If y = X'\beta + u and \Er[u] = 0 and \Er[uu'] = \sigma^2 I_n, then the BLUE of c'\beta is c'\hat{\beta} with \hat{\beta} = (X'X)^{-1} X' y