
ECON526: Quantitative Economics with Data Science
Applications
Stochastic Processes, Markov Chains, and Expectations

Jesse Perla

University of British Columbia

jesse.perla@ubc.ca

1 / 40

mailto:jesse.perla@ubc.ca

Table of contents
Overview
Stochastic and Markov Processes
Markov Chains

2 / 40

Overview

3 / 40

Summary
Here we build on the previous lecture on probability and distributions to
introduce stochastic processes, Markov processes, and
expectations/forecasts

We will introduce,

1. Stochastic Processes a sequence of events where the probability of the next
event depends the past events

2. Markov Processes a stochastic process where the probability of the next
event depends only on the current event

4 / 40

Packages and Other Materials
See the following for extra material - some of which were used in these notes

→

→

→

QuantEcon Markov Chains

Intermediate QuantEcon Markov Chains

QuantEcon AR1 Processes

import matplotlib.pyplot as plt1
import pandas as pd2
import numpy as np3
import scipy.stats4
import seaborn as sns5
from scipy.stats import rv_discrete6
from numpy.linalg import matrix_power7

5 / 40

https://intro.quantecon.org/markov_chains_I.html
https://python.quantecon.org/finite_markov.html
https://python.quantecon.org/ar1_processes.html

Stochastic and Markov
Processes

6 / 40

Discrete-time Stochastic Process
A stochastic process is a sequence of random variables 1

Events in are subtle to de�ne because they contain nested information

→ e.g. the realized random variable depends on , , and
changes the future random variables , , etc.

→ Similarly, the probability of is effected by the realized and

Intuitively we can work with each and look at conditional
distributions by considering independence, etc.

{Xt}
∞
t=0

Ω

Xt Xt−1 Xt−2

Xt+1 Xt+2

Xt+1 Xt Xt−1

{Xt}
∞
t=0

1. See formal de�nition here

7 / 40

https://en.wikipedia.org/wiki/Stochastic_process#Definitions

Information Sets and Forecasts
Expectations and conditional expectations give us notation for making
forecasts while carefully de�ning information available

→ More general, and not speci�c to stochastic processes or forecasts

→ Might to “nowcast” or “smooth” to update your previous estimates

To formalize

1. De�ne information set as the known random variables

2. Provide a random variable that is forecast using the information set

3. Typically, provide a function of the random variable of interest and
calculate the conditional expectation given the information set

8 / 40

Forecasts and Conditional Probability Distributions
Take a stochastic process

De�ne the information set at as

The conditional probability of given the information set is

→ e.g. the probability of being unemployed, unemployed, or retired next
period given the full workforce history

→ Useful in macroeconomics when you want to formalize expectations of
the future, as well as econometrics when you want to update estimates
given different amounts of observation

{Xt}
∞
t=0

t It ≡ {X0, X1, … , Xt}

Xt+1 It

P(Xt+1 | Xt, Xt−1, … X0) ≡ P(Xt+1 | It)

9 / 40

Forecasts and Conditional Expectations
You may instead be interested in a function, , of the random variable (e.g.,
�nancial payoffs, utility, losses in econometrics)

Use the conditional probability of the forecasts for conditional expectations

→ e.g. the expected utility of being unemployed next period given the history
of unemployment; or the expected dividends in a portfolio next period
given the history of dividends

Standard properties of expectations hold conditioning on information sets,

→
→ , i.e., not stochastic if the information set

f(⋅)

E[f(Xt+1) | Xt, Xt−1, … X0] ≡ E[f(Xt+1) | It]

E[A Xt+1 + B Yt+1 | It] = AE[Xt+1 | It] + BE[Yt+1 | It]

E[Xt | It] = Xt Xt

10 / 40

Easy Notation for Information Sets
Information sets in stochastic processes are often just a sequence for the
entire history. Hence the time, , is often su�cient

Given for shorthand we can denote

t

It ≡ {X0, X1, … , Xt}

E[f(Xt+1) | Xt, Xt−1, … X0] ≡ E[f(Xt+1) | It]

≡ Et[f(Xt+1)]

11 / 40

Law of Iterated Expectations for Stochastic Processes
Recall that since is known at

The Law of Iterated Expectations can be written as

i.e. if I am forecasting my forecast, I can only use information available today

It ⊂ It+1 Xt+1 t + 1

E [E[Xt+2 | Xt+1, Xt, Xt−1, …] | Xt, Xt−1, …] = E[Xt+2 | Xt, Xt−1, …]

E [E[Xt+2 | It+1] | It] = E[Xt+2 | It]

Et[Et+1[Xt+2]] = Et[Xt+2]

12 / 40

Markov Processes
(1st-Order) Markov Process: a stochastic process where the conditional
probability of the future is independent of the past given the present

→ Or with information sets:

→ i.e., the present su�ciently summarizes the past for predicting the future

Conditional expectations are are then

P(Xt+1 | Xt, Xt−1, …) = P(Xt+1 | Xt)

P(Xt+1 | It) = P(Xt+1 | Xt)

E[f(Xt+1) | Xt, Xt−1, … X0] = E[f(Xt+1) | Xt]

13 / 40

Martingales
A stochastic process is a martingale if

Not all martingales are Markov processes, but most of the ones you will
encounter are. If Markov,

{Xt}
∞
t=0

E[Xt+1 | Xt, Xt−1, … , X0] = Xt

E[Xt+1 | Xt] = Xt, or Et[Xt+1] = Xt

See for a more formal de�nition with the complete set of requirementshere

14 / 40

https://en.wikipedia.org/wiki/Martingale_(probability_theory)

Random Walks
Let

A simple two-state random walk can be written as the following transition

Markov since summarizes the past. Martingale?

Xt ∈ {−∞, … , −1, 0, 1, … ∞}

P(Xt+1 = Xt + 1 | Xt) = P(Xt+1 = Xt − 1 | Xt) =
1

2

Xt

E(Xt+1 | Xt) = P(Xt+1 = Xt + 1 | Xt) × (Xt + 1)

+ P(Xt+1 = Xt − 1 | Xt) × (Xt − 1)

=
1

2
(Xt + 1) +

1

2
(Xt − 1) = Xt

15 / 40

Implementation in Python
Generic code to simulate a random walk with IID steps

def simulate_walk(rv, X_0, T):1
 X = np.zeros((X_0.shape[0], T+1))2
 X[:, 0] = X_03
 for t in range(1, T+1):4
 X[:, t] = X[:, t-1] \5
 +rv.rvs(size=X_0.shape[0])6
 return X7
steps = np.array([-1, 1])8
probs = np.array([0.5, 0.5])9
rv = rv_discrete(values=(steps, probs))10
X_0 = np.array([0.0, 0.0, 0.0])11
X = simulate_walk(rv, X_0, 10)12
plt.figure()13
plt.plot(X.T)14

def simulate_walk(rv, X_0, T):1
 X = np.zeros((X_0.shape[0], T+1))2
 X[:, 0] = X_03
 for t in range(1, T+1):4
 X[:, t] = X[:, t-1] \5
 +rv.rvs(size=X_0.shape[0])6
 return X7
steps = np.array([-1, 1])8
probs = np.array([0.5, 0.5])9
rv = rv_discrete(values=(steps, probs))10
X_0 = np.array([0.0, 0.0, 0.0])11
X = simulate_walk(rv, X_0, 10)12
plt.figure()13
plt.plot(X.T)14

def simulate_walk(rv, X_0, T):1
 X = np.zeros((X_0.shape[0], T+1))2
 X[:, 0] = X_03
 for t in range(1, T+1):4
 X[:, t] = X[:, t-1] \5
 +rv.rvs(size=X_0.shape[0])6
 return X7
steps = np.array([-1, 1])8
probs = np.array([0.5, 0.5])9
rv = rv_discrete(values=(steps, probs))10
X_0 = np.array([0.0, 0.0, 0.0])11
X = simulate_walk(rv, X_0, 10)12
plt.figure()13
plt.plot(X.T)14

16 / 40

Visualizing the Distribution of Many Trajectories
 for �nite as

But is there a limiting distribution of as ?

E0[Xt] → 0 t t → ∞

Xt Xt → ∞

num_trajectories, T = 100, 201
X = simulate_walk(rv, np.zeros(num_trajectories), T)2
percentiles = np.percentile(X, [50, 5, 95], axis=0)3
fig, ax = plt.subplots()4
plt.plot(np.arange(T+1), percentiles[0,:], alpha=0.5, label='Median')5
plt.fill_between(np.arange(T+1), percentiles[1,:], percentiles[2,:],6
 alpha=0.5, label='5th-95th Percentile')7
plt.xlabel('t')8
ax.set_xticks(np.arange(T+1))9
plt.legend()10
plt.grid(True)11

17 / 40

Visualizing the Distribution of Many Trajectories

18 / 40

AR(1) Processes
An auto-regressive process of order 1, AR(1), is the Markov process

→ is the persistence of the process, is the volatility

→ is a random shock, we will assume

Can show and hence

Xt+1 = ρXt + σϵt+1

ρ σ ≥ 0

ϵt+1 N (0, 1)

Xt+1 | Xt ∼ N (ρXt, σ2)

Et[Xt+1] = ρXt, Vt[Xt+1] = σ2

For much more, see QuantEcon Lectures on AR(1)

19 / 40

https://python.quantecon.org/ar1_processes.html

Stationarity and Unit Roots
Unit roots are a special case of AR(1) processes where

They are important in econometrics because they tell us if processes have
permanent or transitory changes

→ The econometrics of �nding whether are subtle and important

Note that if then this is a martingale since

These are an important example of a non-stationary process.

Intuitively: stationary if distribution has well-de�ned limit as

→ Key requirements: and

ρ = 1

ρ = 1

ρ = 1 Et[Xt+1] = Xt

Xt t → ∞

limt→∞ |E[Xt]| < ∞ limt→∞ V(Xt) < ∞

See for a rigorous de�nitions and different types of stationarity and discussion of auto-covariancehere

20 / 40

https://en.wikipedia.org/wiki/Stationary_process

Simulating Unit Root
X_0 = np.array([0.0, 0.0, 0.0])1
rv_epsilon = scipy.stats.norm(loc=0, scale=1) 2
X = simulate_walk(rv_epsilon, X_0, 10)3
plt.figure()4
plt.plot(X.T)5

21 / 40

Visualizing the Distribution of Many Trajectories

22 / 40

Martingales and Arbitrage in Finance
Random Walks are a key model in �nance

→ e.g. stock prices, exchange rates, etc.

Central to no-arbitrage pricing, after adjusting to interest rates/risk/etc.

→ e.g. if you could predict the future price of a stock, you could make money
by buying/selling today

→ Martingales have no systematic drift which leads to a key source of
arbitrage (especially with options/derivatives)

Does this prediction hold up in the data? Generally yes, but depends on how
you handle risk/etc.

→ If it were systematically wrong then hedge funds and traders would be far
richer than they are now

23 / 40

Information and Arbitrage

Given all of the information available, the best forecast of the future is the
current price. Plenty of variables in for individuals, including public prices

Does this mean there is never arbitrage?

→ No, just that it may be short-term because prices feed back into

→ So some individuals make short term money given private information,
but that information quickly becomes re�ecting in other people’s
information sets (typically through prices)

→ How, and how quickly markets aggregate information is a key question in
�nancial economics

E[Xt+1 | It] = Xt

It

It

24 / 40

Markov Chains

25 / 40

Discrete-Time Markov Chains
A Markov Chain is a Markov process with a �nite number of states

→ be a sequence of Markov random variables

→ In discrete time it can be represented by a transition matrix where

We are counting from to for coding convenience in Python. Names of
discrete states are arbitrary!

→ Count from 1 in R, Julia, Matlab, Fortran, instead

Xt ∈ {0, … , N − 1}

P

Pij ≡ P(Xt+1 = j | Xt = i)

0 N − 1

A instead uses a transition rate matrix where is the rate of transitioning
from state to state . All rows such to rather than . Many properties have analogies, for example there is an
eigenvalue of rather than an eigenvalue of

continuous-time Markov Chain Λ Λij = λij

i j 0 1
0 1

26 / 40

https://en.wikipedia.org/wiki/Continuous-time_Markov_chain#:~:text=A%20continuous%2Dtime%20Markov%20chain,probabilities%20of%20a%20stochastic%20matrix.

Stochastic Matrices
 is a if

→ for all , i.e. rows are conditional distributions

Key Property:

→ One (or more) eigenvalue of with associated left-eigenvector

→ Equivalently the right eigenvector with eigenvalue

→ Where we can normalize to

P stochastic matrix

∑N−1

j=0
Pij = 1 i

1 π

πP = π

= 1

P ⊤π⊤
= π⊤

∑N−1

n=0
πi = 1

27 / 40

https://en.wikipedia.org/wiki/Stochastic_matrix

Transitions and Conditional Distributions
The summarizes all transitions. Let be the state at time which in
general is a probability distribution with pmf

Can show that the evolution of this distribution is given by

And hence given some we can forecast the distribution of with

→ i.e., using the matrix power we discussed in previous lectures

P Xt t

πt

πt+1 = πt ⋅ P

Xt Xt+j

Xt+j | Xt ∼ πt ⋅ P j

28 / 40

Stationary Distribution
Take some initial condition, does this converge?

→ Does it exist? Is it unique?

How does it compare to �xed point below, i.e. does for all ?

→ This is the eigenvector associated with the eigenvalue of of

→ Can prove there is always at least one. If more than one, multiplicity

Xt

lim
j→∞

Xt+j |Xt = lim
j→∞

πt ⋅ P j = π∞?

π̄ = π∞ Xt

π̄ = π̄ ⋅ P

1 P ⊤

The conditions for stationary distributions, uniqueness, etc. are covered here

29 / 40

https://intro.quantecon.org/markov_chains_II.html

Conditional Expectations
Given the conditional probabilities, expectations are easy

Now assign as a random variable with values and pmf

De�ne

From de�nition of conditional expectations

Xt x1, … xN πt

x ≡ []x0 … xN−1

E[Xt+j | Xt] =
N−1

∑
i=0

xiπt+j,i = (πt ⋅ P j) ⋅ x

30 / 40

Example of Markov Chain: Employment Status
Employment(E) in state , Unemployment(U) in state

 and

 and

Transition matrix

0 1

P(U | E) = a P(E | E) = 1 − a

P(E | U) = b P(U | U) = 1 − b

P ≡

[]

Xt+1=E Xt+1=U

Xt=E }

Xt=U }

1 − a a

b 1 − b

31 / 40

Visualizing the Chain

E

1-a

Ua
b

1-b

32 / 40

Transitions and Probabilities
Let , i.e.

The distribution of is then

→ (�rst element)

→ Can use to forecast probability of employment periods in future

Can also use our conditional expectations to calculate expected income

→ De�ne income in E state as and in the U

→

π0 ≡ []⊤1 0 P(X0 = E) = 1

X1 π1 = π0 ⋅ P

P(X1 = E | X0 = E) = π11

j

100, 000 20, 000

x ≡ []⊤100, 000 20, 000

E[Xt+j | Xt = E] = ([] ⋅ P j) ⋅ x1 0

33 / 40

Coding Markov Chain in Python
We can make simulation easier if turn rows into conditional distributions

Count states from to make coding easier, i.e. and 0 E = 0 U = 1

a, b = 0.05, 0.11
P = np.array([[1-a, a], # P(X | E)2
 [b, 1-b]]) # P(X | U)3
N = P.shape[0]4
P_rv = [rv_discrete(values=(np.arange(0,N),5
 P[i,:])) for i in range(N)]6
X_0 = 0 # i.e. E7
X_1 = P_rv[X_0].rvs() # draw index | X_0 8
print(f"X_0 = {X_0}, X_1 = {X_1}")9
T = 1010
X = np.zeros(T+1, dtype=int)11
X[0] = X_012
for t in range(T):13
 X[t+1] = P_rv[X[t]].rvs() # draw given X_t14
print(f"X_t indices =\n {X}")15

a, b = 0.05, 0.11
P = np.array([[1-a, a], # P(X | E)2
 [b, 1-b]]) # P(X | U)3
N = P.shape[0]4
P_rv = [rv_discrete(values=(np.arange(0,N),5
 P[i,:])) for i in range(N)]6
X_0 = 0 # i.e. E7
X_1 = P_rv[X_0].rvs() # draw index | X_0 8
print(f"X_0 = {X_0}, X_1 = {X_1}")9
T = 1010
X = np.zeros(T+1, dtype=int)11
X[0] = X_012
for t in range(T):13
 X[t+1] = P_rv[X[t]].rvs() # draw given X_t14
print(f"X_t indices =\n {X}")15

a, b = 0.05, 0.11
P = np.array([[1-a, a], # P(X | E)2
 [b, 1-b]]) # P(X | U)3
N = P.shape[0]4
P_rv = [rv_discrete(values=(np.arange(0,N),5
 P[i,:])) for i in range(N)]6
X_0 = 0 # i.e. E7
X_1 = P_rv[X_0].rvs() # draw index | X_0 8
print(f"X_0 = {X_0}, X_1 = {X_1}")9
T = 1010
X = np.zeros(T+1, dtype=int)11
X[0] = X_012
for t in range(T):13
 X[t+1] = P_rv[X[t]].rvs() # draw given X_t14
print(f"X_t indices =\n {X}")15

X_0 = 0, X_1 = 0
X_t indices =
 [0 0 0 0 0 1 1 1 1 1 1]

34 / 40

Simulating Many Trajectories
def simulate_markov_chain(P, X_0, T):1
 N = P.shape[0]2
 num_chains = X_0.shape[0]3
 P_rv = [rv_discrete(values=(np.arange(0,N),4
 P[i,:])) for i in range(N)]5
 X = np.zeros((num_chains, T+1), dtype=int)6
 X[:,0] = X_07
 for t in range(T):8
 for n in range(num_chains):9
 X[n, t+1] = P_rv[X[n, t]].rvs()10
 return X11
X_0 = np.zeros(100, dtype=int) # 100 people start employed12
T = 4013
X = simulate_markov_chain(P, X_0, T)14
Map indices to RV values15
values = np.array([100000.00, 20000.00]) # map state to value16
X_values = values[X] # just indexes by the X17

def simulate_markov_chain(P, X_0, T):1
 N = P.shape[0]2
 num_chains = X_0.shape[0]3
 P_rv = [rv_discrete(values=(np.arange(0,N),4
 P[i,:])) for i in range(N)]5
 X = np.zeros((num_chains, T+1), dtype=int)6
 X[:,0] = X_07
 for t in range(T):8
 for n in range(num_chains):9
 X[n, t+1] = P_rv[X[n, t]].rvs()10
 return X11
X_0 = np.zeros(100, dtype=int) # 100 people start employed12
T = 4013
X = simulate_markov_chain(P, X_0, T)14
Map indices to RV values15
values = np.array([100000.00, 20000.00]) # map state to value16
X_values = values[X] # just indexes by the X17

def simulate_markov_chain(P, X_0, T):1
 N = P.shape[0]2
 num_chains = X_0.shape[0]3
 P_rv = [rv_discrete(values=(np.arange(0,N),4
 P[i,:])) for i in range(N)]5
 X = np.zeros((num_chains, T+1), dtype=int)6
 X[:,0] = X_07
 for t in range(T):8
 for n in range(num_chains):9
 X[n, t+1] = P_rv[X[n, t]].rvs()10
 return X11
X_0 = np.zeros(100, dtype=int) # 100 people start employed12
T = 4013
X = simulate_markov_chain(P, X_0, T)14
Map indices to RV values15
values = np.array([100000.00, 20000.00]) # map state to value16
X_values = values[X] # just indexes by the X17

def simulate_markov_chain(P, X_0, T):1
 N = P.shape[0]2
 num_chains = X_0.shape[0]3
 P_rv = [rv_discrete(values=(np.arange(0,N),4
 P[i,:])) for i in range(N)]5
 X = np.zeros((num_chains, T+1), dtype=int)6
 X[:,0] = X_07
 for t in range(T):8
 for n in range(num_chains):9
 X[n, t+1] = P_rv[X[n, t]].rvs()10
 return X11
X_0 = np.zeros(100, dtype=int) # 100 people start employed12
T = 4013
X = simulate_markov_chain(P, X_0, T)14
Map indices to RV values15
values = np.array([100000.00, 20000.00]) # map state to value16
X_values = values[X] # just indexes by the X17

35 / 40

Simulating Many Trajectories

36 / 40

Visualizing the Distribution of Many Trajectories
Count the occurrences of each unique value at each time step1
unique_values = np.unique(X_values)2
counts = np.array([[np.sum(X_values[:, t] == val) for val in unique_values] for t in range(T)])3

4
Create the stacked bar chart5
fig, ax = plt.subplots()6
bottoms = np.zeros(T)7
for i, val in enumerate(unique_values):8
 ax.bar(range(T), counts[:, i], bottom=bottoms, label=str(val))9
 bottoms += counts[:, i]10

11
Labels and title12
ax.set_xlabel('Time')13
ax.set_ylabel('Count')14
ax.set_title('Proportion of Each Value at Each Time')15
ax.legend(title='Value')16
plt.show()17

37 / 40

Visualizing the Distribution of Many Trajectories

38 / 40

Stationary Distribution
Recall different ways to think about steady states

→ Left-eigenvector:

→ Limiting distribution:

Can show that the stationary distribution is

π̄ = π̄P

limT→∞ π0P
T

π̄ = []b

a+b

a

a+b

eigvals, eigvecs = np.linalg.eig(P.T)1
pi_bar = eigvecs[:, np.isclose(eigvals, 1)].flatten(2
pi_bar = pi_bar / pi_bar.sum()3
pi_0 = np.array([1.0, 0.0])4
pi_inf = pi_0 @ matrix_power(P, 100)5
print(f"pi_bar = {pi_bar}")6
print(f"pi_inf = {pi_inf}")7

eigvals, eigvecs = np.linalg.eig(P.T)1
pi_bar = eigvecs[:, np.isclose(eigvals, 1)].flatten(2
pi_bar = pi_bar / pi_bar.sum()3
pi_0 = np.array([1.0, 0.0])4
pi_inf = pi_0 @ matrix_power(P, 100)5
print(f"pi_bar = {pi_bar}")6
print(f"pi_inf = {pi_inf}")7

pi_bar = [0.66666667 0.33333333]
pi_inf = [0.6666667 0.3333333]

39 / 40

Expected Income
Recall that E[Xt+j | Xt = E] = ([] ⋅ P j) ⋅ x1 0

def forecast_distributions(P, pi_0, T):1
 N = P.shape[0]2
 pi = np.zeros((T+1, N))3
 pi[0, :] = pi_04
 for t in range(T):5
 pi[t+1, :] = pi[t, :] @ P6
 return pi7
x = np.array([100000.00, 20000.00])8
pi_0 = np.array([1.0, 0.0])9
T = 2010
pi = forecast_distributions(P, pi_0, T)11
E_X_t = np.dot(pi, x)12
E_X_bar = pi_bar @ x13
plt.plot(np.arange(0, T+1), E_X_t)14
plt.axhline(E_X_bar, color='r',15
 linestyle='--')16
plt.show()17

def forecast_distributions(P, pi_0, T):1
 N = P.shape[0]2
 pi = np.zeros((T+1, N))3
 pi[0, :] = pi_04
 for t in range(T):5
 pi[t+1, :] = pi[t, :] @ P6
 return pi7
x = np.array([100000.00, 20000.00])8
pi_0 = np.array([1.0, 0.0])9
T = 2010
pi = forecast_distributions(P, pi_0, T)11
E_X_t = np.dot(pi, x)12
E_X_bar = pi_bar @ x13
plt.plot(np.arange(0, T+1), E_X_t)14
plt.axhline(E_X_bar, color='r',15
 linestyle='--')16
plt.show()17

def forecast_distributions(P, pi_0, T):1
 N = P.shape[0]2
 pi = np.zeros((T+1, N))3
 pi[0, :] = pi_04
 for t in range(T):5
 pi[t+1, :] = pi[t, :] @ P6
 return pi7
x = np.array([100000.00, 20000.00])8
pi_0 = np.array([1.0, 0.0])9
T = 2010
pi = forecast_distributions(P, pi_0, T)11
E_X_t = np.dot(pi, x)12
E_X_bar = pi_bar @ x13
plt.plot(np.arange(0, T+1), E_X_t)14
plt.axhline(E_X_bar, color='r',15
 linestyle='--')16
plt.show()17

40 / 40

