Call: rdrobust
Number of Observations: 1000
Polynomial Order Est. (p): 1
Polynomial Order Bias (q): 2
Kernel: Uniform
Bandwidth Selection: msetwo
Var-Cov Estimator: NN
Left Right
------------------------------------------------
Number of Observations 536 464
Number of Unique Obs. 536 464
Number of Effective Obs. 127 108
Bandwidth Estimation 0.497 0.452
Bandwidth Bias 0.912 0.814
rho (h/b) 0.544 0.555
Method Coef. S.E. t-stat P>|t| 95% CI
-------------------------------------------------------------------------
Conventional 1.681 0.517 3.25 1.153e-03 [0.667, 2.695]
Robust - - 2.945 3.230e-03 [0.595, 2.964]
Confidence Intervals
Optimal h has \(\mathrm{Bias}^2 = \var\)
Need to correct for bias for confidence intervals to be correct
Use “Robust” interval reported by rdrobust
See section 4.3 of Cattaneo, Idrobo, and Titiunik (2019)
Kernel Weighting
Instead of treating all observations within bandwith as equally important for estimating discontinuity, we might want to weight observations closer to discontinuity more
Mass points detected in the running variable.
Warning: not enough variability in the outcome variable below the threshold
Call: rdplot
Number of Observations: 23132
Kernel: Uniform
Polynomial Order Est. (p): 4
Left Right
------------------------------------------------
Number of Observations 7709 15423
Number of Effective Obs 7709 15423
Bandwith poly. fit (h) 43.48 56.23
Number of bins scale 1 1
Bins Selected 1 234
Average Bin Length 43.48 0.24
Median Bin Length 43.48 0.24
IMSE-optimal bins nan 8.0
Mimicking Variance bins nan 234.0
Relative to IMSE-optimal:
Implied scale nan 29.25
WIMSE variance weight nan 0.0
WIMSE bias weight nan 1.0
Mass points detected in the running variable.
Mass points detected in the running variable.
Call: rdrobust
Number of Observations: 23132
Polynomial Order Est. (p): 1
Polynomial Order Bias (q): 2
Kernel: Triangular
Bandwidth Selection: mserd
Var-Cov Estimator: NN
Left Right
------------------------------------------------
Number of Observations 7709 15423
Number of Unique Obs. 3644 9327
Number of Effective Obs. 6600 7466
Bandwidth Estimation 18.51 18.51
Bandwidth Bias 28.994 28.994
rho (h/b) 0.638 0.638
Method Coef. S.E. t-stat P>|t| 95% CI
-------------------------------------------------------------------------
Conventional 0.625 0.012 51.592 0.000e+00 [0.601, 0.649]
Robust - - 43.114 0.000e+00 [0.595, 0.652]
Call: rdplot
Number of Observations: 23132
Kernel: Uniform
Polynomial Order Est. (p): 4
Left Right
------------------------------------------------
Number of Observations 7709 15423
Number of Effective Obs 7709 15423
Bandwith poly. fit (h) 43.48 56.23
Number of bins scale 1 1
Bins Selected 232 238
Average Bin Length 0.196 0.236
Median Bin Length 0.187 0.236
IMSE-optimal bins 5.0 9.0
Mimicking Variance bins 232.0 238.0
Relative to IMSE-optimal:
Implied scale 46.4 26.444
WIMSE variance weight 0.0 0.0
WIMSE bias weight 1.0 1.0
Mass points detected in the running variable.
Mass points detected in the running variable.
Call: rdrobust
Number of Observations: 23132
Polynomial Order Est. (p): 1
Polynomial Order Bias (q): 2
Kernel: Triangular
Bandwidth Selection: mserd
Var-Cov Estimator: NN
Left Right
------------------------------------------------
Number of Observations 7709 15423
Number of Unique Obs. 3644 9327
Number of Effective Obs. 3877 3908
Bandwidth Estimation 9.042 9.042
Bandwidth Bias 14.404 14.404
rho (h/b) 0.628 0.628
Method Coef. S.E. t-stat P>|t| 95% CI
-------------------------------------------------------------------------
Conventional 0.269 0.023 11.709 1.144e-31 [0.224, 0.314]
Robust - - 10.048 9.410e-24 [0.221, 0.328]
Questions
How to get an IV estimate?
What causal interpretation can we give an IV estimate?
Potential Outcomes
“Assigned treatment \(A_i = 1\{R_i > c\}\)
Potential treatments \(D_i(A_i) \in \{0,1\}\)
Potential outcomes \(Y_i(a, d)\)
Observed outcome \(Y_i(A_i,D_i(A_i))\)
Exclusion restriction: \(R_i\) does not affect treatment or outcome, except through \(A_i\)
Use rdrobust for bandwidth selection and confidence intervals
LATE
late = rdrobust.rdrobust(df.spadies_any, df.running_sisben, fuzzy=df.beneficiary_spp)late
Mass points detected in the running variable.
Mass points detected in the running variable.
Call: rdrobust
Number of Observations: 23132
Polynomial Order Est. (p): 1
Polynomial Order Bias (q): 2
Kernel: Triangular
Bandwidth Selection: mserd
Var-Cov Estimator: NN
Left Right
------------------------------------------------
Number of Observations 7709 15423
Number of Unique Obs. 3644 9327
Number of Effective Obs. 3877 3908
Bandwidth Estimation 9.042 9.042
Bandwidth Bias 14.404 14.404
rho (h/b) 0.628 0.628
Method Coef. S.E. t-stat P>|t| 95% CI
-------------------------------------------------------------------------
Conventional 0.434 0.034 12.773 2.322e-37 [0.368, 0.501]
Robust - - 11.026 2.856e-28 [0.366, 0.524]
Cattaneo, Idrobo, and Titiunik (2019) and Cattaneo, Idrobo, and Titiunik (2024)
https://rdpackages.github.io/
References
Cattaneo, Matias D., Richard K. Crump, Max H. Farrell, and Yingjie Feng. 2024. “On Binscatter.”American Economic Review 114 (5): 1488–1514. https://doi.org/10.1257/aer.20221576.
Cattaneo, Matias D., Nicolas Idrobo, and Rocío Titiunik. 2024. A Practical Introduction to Regression Discontinuity Designs: Extensions. Cambridge University Press. https://doi.org/10.1017/9781009441896.
Cattaneo, Matias D., Nicolás Idrobo, and Rocío Titiunik. 2019. A Practical Introduction to Regression Discontinuity Designs: Foundations. Cambridge University Press. https://doi.org/10.1017/9781108684606.
Chernozhukov, V., C. Hansen, N. Kallus, M. Spindler, and V. Syrgkanis. 2024. Applied Causal Inference Powered by ML and AI. https://causalml-book.org/.
Londoño-Vélez, Juliana, Catherine Rodríguez, and Fabio Sánchez. 2020. “Upstream and Downstream Impacts of College Merit-Based Financial Aid for Low-Income Students: Ser Pilo Paga in Colombia.”American Economic Journal: Economic Policy 12 (2): 193–227. https://doi.org/10.1257/pol.20180131.