2024-09-23
\[ \def\Er{{\mathrm{E}}} \def\En{{\mathbb{E}_n}} \def\cov{{\mathrm{Cov}}} \def\var{{\mathrm{Var}}} \def\R{{\mathbb{R}}} \def\arg{{\mathrm{arg}}} \newcommand\norm[1]{\left\lVert#1\right\rVert} \def\rank{{\mathrm{rank}}} \newcommand{\inpr}{ \overset{p^*_{\scriptscriptstyle n}}{\longrightarrow}} \def\inprob{{\,{\buildrel p \over \rightarrow}\,}} \def\indist{\,{\buildrel d \over \rightarrow}\,} \DeclareMathOperator*{\plim}{plim} \DeclareMathOperator*{\argmax}{argmax} \DeclareMathOperator*{\argmin}{argmin} \]
\[ \begin{align*} \hat{\theta} \in \argmin_{\theta \in \Theta} Q_n(\theta) \end{align*} \]
\(\theta >0\) is the prescription’s (total) cost
\(\omega >0\) is the monetized cost of not taking the drug
Arrive at weekly rate \(\lambda\), drawn from \(G(\theta ,\omega)=G_{2}(\omega |\theta )G_{1}(\theta )\)
\(\lambda\) follows a Markov process \(H(\lambda |\lambda ^{\prime })\)
Flow utility \[ u(\theta ,\omega ;x)=\left \{ \begin{array}{ll} -c(\theta ,x) & if\text{ }filled \\ -\omega & if\text{ }not\text{ }filled% \end{array}% \right. \]
Bellman equation: \[ \begin{eqnarray*} v(x,t,\lambda _{t+1}) &=&E_{\lambda |\lambda _{t+1}} \\ &&\hspace{-1.35in}\left[ \begin{array}{c} (1-\lambda )\delta v(x,t-1,\lambda )+ \\ \lambda \int \max\left \{ \begin{array}{l} -c(\theta ,x)+\delta v(x+\theta ,t-1,\lambda ), \\ -\omega +\delta v(x,t-1,\lambda )% \end{array}% \right \} dG(\theta ,\omega )% \end{array}% \right] \end{eqnarray*} \] with terminal condition \(v(x,0)=0\) for all \(x\)