Summary of "Technological transitions with skill heterogeneity across generations" Adão, Beraja, Pandalai-Naydur

Allen Peters

Vancouver School of Economics, University of British Columbia

allen.peters@ubc.ca

January 19, 2020

Overview

Research question

Why are some technological transitions particularly unequal and slow to play out? (What is the role of life-cycle and skill-specificity?)

< □ > < 同 > < 回 > < 回 > < 回 >

Research question

Why are some technological transitions particularly unequal and slow to play out? (What is the role of life-cycle and skill-specificity?)

Primary contribution

A tractable model relating the speed of technological transitions to skill-specificity and skill investment cost

< □ > < 同 > < 回 > < 回 > < 回 >

Research question

Why are some technological transitions particularly unequal and slow to play out? (What is the role of life-cycle and skill-specificity?)

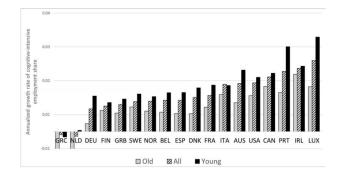
Primary contribution

A tractable model relating the speed of technological transitions to skill-specificity and skill investment cost

- q-skill model of technology transitions
- 2 Empirical evidence
- Oalibrated model results

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Motivation



- Microdata shows differential effects between generations
- Claim this is evidence of high cognitive skill specificity and high skill supply elasticity at longer horizons (low elasticity at short horizons)
- LeChatelier principle: the elasticity of relative output supply increases over time due to changes in the skill distribution across generations

Allen Peters (UBC)

Model environment

Consumption good is CES aggregator of high- and low-tech intermediate inputs:

$$Y_t = \left[\left(A_t X_{Ht} \right)^{\frac{\theta-1}{\theta}} + \left(X_{Lt} \right)^{\frac{\theta-1}{\theta}} \right]^{\frac{\theta}{\theta-1}}$$

• Heterogeneity in worker skill type with differential productivity:

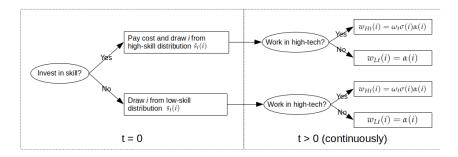
$$X_{Lt} = \int_0^1 \alpha(i) s_{Lt}(i) di, \ X_{Ht} = \int_0^1 \alpha(i) \sigma(i) s_{Ht}(i) di$$

where $\sigma(i)$ denotes the gains from high-skilled labor

< □ > < 同 > < 回 > < 回 > < 回 >

Skill investment

- OLG with stochastic lifetimes
- Worker choice over costly and risky skill investment



3

イロト イポト イヨト イヨト

Two key parameters

 Technology-skill specificity is inversely related to the short-run skill supply elasticity η, in turn depends on the slope of σ (l_t):

$$\eta \equiv \left| \frac{\partial \log I_t(\omega_t)}{\partial \log \omega_t} \right| = \left(\frac{\partial \log \sigma(I_t)}{\partial \log i} \right)^{-1}$$

• Higher $1/\eta$ implies degree of technology-skill specificity is higher because short-run worker reallocation following relative wage changes is smaller

< □ > < □ > < □ > < □ > < □ > < □ >

Two key parameters

 Technology-skill specificity is inversely related to the short-run skill supply elasticity η, in turn depends on the slope of σ (l_t):

$$\eta \equiv \left| \frac{\partial \log I_t(\omega_t)}{\partial \log \omega_t} \right| = \left(\frac{\partial \log \sigma(I_t)}{\partial \log i} \right)^{-1}$$

- Higher $1/\eta$ implies degree of technology-skill specificity is higher because short-run worker reallocation following relative wage changes is smaller
- **Cost of skill investment** is $1/\psi$. Cost of high-skill lottery is second term in skill investment problem:

$$\max_{\tilde{s}_t(\cdot):\int_0^1 \tilde{s}_t(i)di=1} \int_0^1 V_t(i)\tilde{s}_t(i)di - \frac{1}{\psi} \int_0^1 \log\left(\frac{\tilde{s}_t(i)}{\bar{s}_t(i)}\right) \tilde{s}_t(i)di$$

where $V_t(i)$ is present discount value of consumption

 Lower cost (higher ψ) implies higher sensitivity of long-run supply of high-i types to changes in relative wage

Dynamics

- Transform complex infinite-dimensional fixed-point problem to system of differential equations with log-linear expansion around equilibrium
- Assignment threshold *I_t* is the type that is indifferent between working with any of the two technologies such that:

$$\omega_t \sigma(I_t) = 1$$

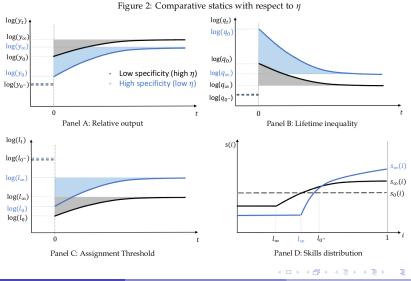
 q is the present discounted value of the log-relative wage ≡ "relative lifetime wage":

$$\log\left(q_{t}
ight)\equiv\int_{t}^{\infty}e^{-\left(
ho+\delta
ight)\left(s-t
ight)}\log\left(\omega_{s}
ight)ds$$

Impulse responses:

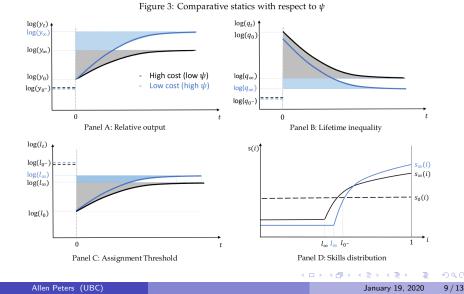
$$\begin{bmatrix} \Delta \log (l_t) \\ \Delta \log (q_t) \\ \Delta \log (y_t) \end{bmatrix} \propto \underbrace{\begin{bmatrix} -\eta \\ \frac{1}{\rho+\lambda} \\ 1+\kappa\eta \end{bmatrix}}_{\text{Short-run}} + \underbrace{\frac{\psi}{\chi} \begin{bmatrix} \eta \\ \frac{-1}{\rho+\delta+\lambda} \\ \theta-1 \end{bmatrix}}_{\text{Short-to long-run transition}} \underbrace{(1-e^{-\lambda t})}_{\text{Short-to long-run transition}}$$

Dynamic response to skill biased tech shock $(\theta > 1)$



Allen Peters (UBC)

Dynamic response to skill biased tech shock ($\theta > 1$)



Bringing the model to the data

- Can only credibly measure short-term effects
- Use model to infer dynamics from snapshots of:
 - within-generation change in employment of the "old" generation born before the shock:

$$rac{\partial \left|arepsilon_{0}^{ ext{twithin}}
ight|}{\partial \eta}>0, \quad rac{\partial \left|arepsilon_{0}^{ ext{within}}
ight|}{\partial \psi}=0$$

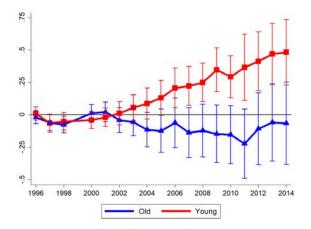
entering at the time of the shock and "old" generations born before the shock

$$rac{\partial \left| arepsilon_{0}^{ ext{between}}
ight|}{\partial \eta} < 0, \quad rac{\partial \left| arepsilon_{0}^{ ext{between}}
ight|}{\partial \psi} > 0$$

< □ > < 同 > < 三 > < 三 >

Cognitive intensity and growth estimate

employment growth = $\sum_{c} (\alpha_t^c + \beta_t^{c*} \text{cognitive intensity}_o) \mathbb{1}_{[g=c]} DSL_i + \delta_{o,t} + \zeta_{g,t} + X_{io,t}^g \gamma_t^g + \epsilon_{io,t}^g$



(a) Relative employment response for each generation

Allen Peters (UBC)

3

< □ > < □ > < □ > < □ > < □ > < □ >

Calibrated model simulation

• High-tech productivity shock that increases the employment share in the cognitive-intensive technology from 20% to 50% (convergence of "developed" countries)

Table 3:	Changes	in Average	Welfare and	Lifetime	Welfare	Inequality
----------	---------	------------	-------------	----------	---------	------------

	Ba	Baseline		Low specificity		
	$(\eta pprox 0)$	$(\eta pprox 0, \psi = 0.35)$		$(\eta = 0.75, \psi = 0.35)$		
	$\Delta \bar{U}$	$\Delta \bar{\Omega}$	$\Delta \bar{U}$	$\Delta \bar{\Omega}$		
True	46%	39%	44%	29%		
Short-run	31%	76%	40%	45%		
Long-run	55%	30%	47%	24%		
DCIR(q)		0.9		0.4		

< □ > < □ > < □ > < □ > < □ > < □ >

Conclusion

- Tractable model maps short-run observables to transition dynamics based on "frictions" from life-cycle and skill-technology specificity
- Some empirical evidence to support the motivation and calibrate the model
- Evidence that the "frictions" result in economically significant welfare impacts

4 AR & 4 E & 4 E