Will Artificial Intelligence Replace Computational Economists Any Time Soon?

Maliar, Maliar, and Winant

January 13, 2020

Table of contents

Introduction

Deep Learning
Problem of prediction
Neural networks definition
Training a neural net

Dynamic Economic Models
Set up
Example

Conclusion

Goal

- ▶ Using AI to solve high-dimensional dynamic economic models.
- ► Solving (1) lifetime reward, (2) Bellman equation and (3) Euler equation.
- ► Introduce all-in-one integration technique that makes the stochastic gradient unbiased for the constructed objective functions.

Conceptually, you have seen this before: Use deep neural networks as an approximating functions, and alleviate the curse of dimensionality.

Strategy for solving these high dimensional models

- ▶ Defining an objective (loss) function to be minimized.
- ► Adapting a stochastic gradient descent method to train the constructed objective functions.
- ► Introducing integration methods that are suitable for the constructed objective functions in the context of deep learning based simulation.

Learning: Set up

- lacksquare $\{x_i,y_i\}_{i=1}^n$ (iid) is observed, $x_i\in\mathbb{R}^{d_x}$, $y_i\in\mathbb{R}^{d_y}$.
- ▶ The goal of the machine(or sometimes the econometrician): finding a function $\phi: \mathbb{R}^{d_x} \to \mathbb{R}^{d_y}$ that provides the best prediction, given $\{x_i, y_i\}$ is observed.
- ▶ (Depends on who you ask) a parametric family of functions $\{\phi(.,\theta)|\theta\in\mathbb{R}^{d_{\theta}}\}.$
- ▶ We need a loss function to minimize to find the best $\phi(.,\theta)$. $l: \mathbb{R}^{d_x} \times \mathbb{R}^{d_y} \times \mathbb{R}^{d_\theta} \to \mathbb{R}$
- ► Define *expected risk* as:

$$\Xi(\theta) \equiv \int l(\phi(x;\theta), y) dP(x, y)$$

4 D > 4 A > 4 B > 4 B > B = 40 Q (2)

Not feasible!

Learning : Set up

► $\Xi^n(\theta) \equiv \frac{1}{n} \sum_{i=1}^n l(\phi(x_i; \theta), y_i)$ Problem:

$$\theta_{min} = \operatorname{argmin}_{\theta \in \Theta} \Xi^n(\theta). \tag{1}$$

- ► Then $y = \phi(x; \theta_{min})$.
- ► OLS: $\phi(x;\theta) = \theta x$, $l(\phi(x;\theta), y) = (y \theta x)^2$.
- ▶ This is called *supervised learning* because for each data point x_i , the machine is given correct output y_i to check its prediction $\phi(x_i, \theta)$.
- Not good for a computational economist, we dont get to see the correct y_i (think of ϕ as a policy function).
- $\blacktriangleright \ w \equiv (x,y),$

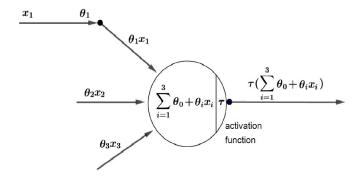
$$\Xi(\theta) = \mathbb{E}_w \left[\xi(w; \theta) \right] \to \frac{1}{n} \sum_{i=1}^n \xi(w_i; \theta). \tag{2}$$

Parametric family of functions: Multi-layer neural nets

A neural network consists of connected nodes, called *artificial neurons*. An artificial neuron consists of

- lacktriangle An ith input (a received signal) $(x_{i,0},...,x_{i,n})$, $x_{i,0}=1$ by conventions
- ▶ Weighting an input bat parameters $\theta = (\theta_0, ..., \theta_n) \in \mathbb{R}^{n+1}$ (non-activated output)
- ▶ Sends an activated output $\in \mathbb{R}$: $\tau(\theta'x)$. τ is called an activation function:
 - 1. Sigmoid : $\tau(x) = \frac{1}{1+e^{-x}}$
 - 2. Heaviside: $\tau(x) = 1 (x \ge 0)$
 - 3. relu : $\tau(x) = \max\{0, x\}$
 - 4. leaky relu : $\tau(x) = \max\{\kappa x, x\}$, $\kappa \leq 0$

A simple artificial neuron



Training a neural net

Assume $\{x_i, y_i\}_{i=1}^n = \{w_i\}_{i=1}^n$ is observed. Define:

$$\Xi^{n'}(\theta) = \frac{1}{n'} \sum_{i=1}^{n'} \xi(w_i; \theta), \ n' \le n$$
 (3)

Batch Gradient Descent: Choose an initial $heta_0$

$$\theta_{k+1} = \theta_k - \lambda_k \nabla_\theta \Xi^{n'}(\theta_k). \tag{4}$$

What is λ ? Think of Newton-Raphson's method: We want to avoid the inverse of the Hessian.

Training a neural net: Summary

Algorithm 1. DL algorithm for supervised learning.

Step 1. Initialize the algorithm.

- i). Set up an expected risk $\Xi(\theta) = E_{\omega} [\xi(\omega; \theta)]$.
- ii). Define approximation $\varphi(\cdot,\theta)$ for φ , where $\theta \equiv [\vartheta,\lambda]$ and ϑ and λ are the approximation coefficients and hyperparameters of the algorithm, respectively.
- iii). Define an empirical risk $\Xi_n(\theta) = \frac{1}{n} \sum_{i=1}^n \xi(\omega_i; \theta)$.
- iv). Fix convergence criteria c_{inn} and c_{out} for inner and outer loops, respectively.
- v). Split the data into 3 samples for constructing a solution (Sample 1), for validation (Sample 2) and for evaluating the accuracy (Sample 3).

Step 2. Train the machine, i.e., find θ that minimizes the empirical risk $\Xi_n(\theta)$.

Outer loop (validation on Sample 2): Fix the hyperparameters λ .

Inner loop (approximation on Sample 1): Fix the approximation coefficients $\vartheta.$

Use data from Sample 1 to evaluate $\nabla_{\vartheta}\xi(\omega_i;\theta)$ (SGD or BGD) and update ϑ .

End the inner loop if the convergence criterion c_{inn} is reached.

Use data from Sample 2 for validation and update λ .

End the outer loop if if the convergence criterion c_{out} is reached.

Step 3. Assess the accuracy of constructed approximation $\varphi(\cdot, \theta)$ on Sample 3.

The economic problem of interest

Problem:

- lacktriangle Exogenous state in \mathbb{R}^{n_m} : $m_{t+1} = M(m_t, \epsilon_t)$
- ▶ Endogenous state in \mathbb{R} : $s_{t+1} = S(m_t, s_t, x_t, m_{t+1})$
- ▶ Choice variable $x_t \in \mathbb{R}^{n_x}$: $x_t \in X(m_t, s_t)$
- ▶ Period reward function: $r(m_t, s_t, x_t)$
- ► Agents problem:

$$\min_{\{x_t, s_{t+1}\}_{t=0}^{\infty}} \quad \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t r(m_t, s_t, x_t) \right]$$
 (5)

- ▶ Policy function: $x_t = \psi(m_t, s_t) \in X(m_t, s_t)$
- ▶ Approximating the policy function: $\phi(.,\theta)$

Consumption-saving problem with four shocks

Problem:

► Agent's problem:

$$\min_{\substack{\{x_{t}, s_{t+1}\}_{t=0}^{\infty} \\ \text{s.t.}}} \mathbb{E}_{0} \left[\sum_{t=0}^{\infty} \beta^{t} e^{\chi_{t}} u(c_{t}) \right]$$

$$\text{s.t.} \quad w_{t+1} = r e^{\varrho_{t}} (w_{t} - c_{t}) + e^{y_{t}} e^{p_{t}(1-\mu)}$$

$$c_{t} \leq w_{t}$$
(6)

 $ightharpoonup z_t \in \{y, p, \varrho, \chi\}$:

$$z_{j,t+1} = \rho_j z_{j,t} + \sigma_j \epsilon_{j,t}$$
, and $\epsilon_{j,t} \sim \mathcal{N}(0,1)$.

► KKT:

$$c - w \le 0, \ h \ge 0, \ \text{and} \ (c - w)h = 0.$$

$$h \equiv u'(c)e^{\chi-\varrho} - \beta r \mathbb{E}_{\epsilon} \left[u'(c')e^{\chi'} \right], \ \frac{c_t}{w_t} \equiv \zeta_t = \sigma \left(\zeta_0 + \phi(z_t, w_t; \theta) \right).$$

Consumption-saving problem: Focusing on Euler equation

Problem:

- Fischer-Burmeister function : $\Psi^{FB} = a + b \sqrt{a^2 + b^2}$
- $ightharpoonup \omega \equiv (z,w)$, the objective (loss, risk) function:

$$\Xi(\theta) = \mathbb{E}_{\omega} \big[\xi(\omega, \theta) \big] \equiv \mathbb{E}_{\omega} \left[\Psi^{\mathsf{FB}} \big(w - c, u'(c) - \beta r e^{\varrho} \mathbb{E}_{\epsilon} [u'(c')] \big) \right]^2 \tag{7}$$

Training results

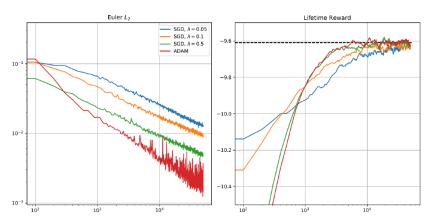


Figure 3. Training with a minimization of Kuhn-Tucker-conditions residuals in the baseline model.

Training results: Decision Rule

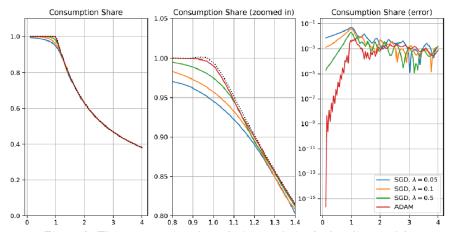


Figure 6. The consumption-share decision rule in the baseline model.

Conclusion

Problem:

- ► No!
- ► Maybe it is the time to move from model-specific methods to general-purpose AI technologies?
- ► In the paper, we propose one AI technology that makes economic models tractable: a deep learning method based on Monte Carlo simulation.
- ► No free lunch theorem: There's no such thing as a free lunch, unless you skip your dinner;)